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Abstract
Low-cost sensors continuously measuring blood
glucose levels in intervals of a few minutes
and mobile platforms combined with machine-
learning (ML) solutions enable personalized pre-
cision health and disease management. ML solu-
tions must be adapted to different sensor technolo-
gies, analysis tasks and individuals. This raises the
issue of scale for creating such adapted ML solu-
tions. We present an approach for predicting blood
glucose levels for diabetics up to one hour into the
future. The approach is based on recurrent neural
networks trained in an end-to-end fashion, requir-
ing nothing but the glucose level history for the pa-
tient. The model outputs the prediction along with
an estimate of its certainty, helping users to inter-
pret the predicted levels. The approach needs no
feature engineering or data pre-processing, and is
computationally inexpensive.

1 Introduction
Our future will be recorded and quantified in unprecedented
temporal resolution and with a rapidly increasing variety of
variables describing activities we engage in as well as phys-
iologically and medically relevant phenomena. One exam-
ple is the increasingly wide adoption of continuous blood
glucose monitoring systems (CGM) which has given type-1
diabetics (T1D) a valuable tool for closely monitoring and
reacting to their current blood glucose levels and trends.
Blood glucose levels adhere to complex dynamics that de-
pend on many different variables (such as carbohydrate in-
take, recent insulin injections, physical activity, stress lev-
els, the presence of an infection in the body, sleeping pat-
terns, hormonal patterns, etc) [Bremer and Gough, 1999;
Cryer et al., 2003]. This makes predicting the short term
blood glucose changes (up to a few hours) a challenging task,
and developing machine learning (ML) approaches an obvi-
ous approach for improving patient care. Variations in sensor
technologies must be reflected in the ML method. However,
acquiring domain expertise, understanding sensors, and hand-
crafting features is expensive and not easy to scale up. Some-

times natural, obviously important and well-studied variables
(e.g. caloric intake for diabetics) might be too inconvenient
to measure for end-users. On the other hand deep learn-
ing approaches are a step towards automated machine learn-
ing, as features, classifiers and predictors are simultaneously
learned. Thus they present a possibly more scalable solu-
tion to the myriad of machine learning problems in precision
health management resulting from technology changes alone.

The hypothesis underlying our approach are:
• It is feasible to predict glucose levels from glucose levels

alone.
• Appropriate models can be trained by non-experts with-

out feature engineering or complicated training proce-
dures.
• Models can quantify uncertainty in their predictions to

alert users to the need for extra caution or additional in-
put.
• Physiologically motivated loss functions improve the

quality of predictions.
We trained and evaluated our method on the Ohio T1DM

Dataset for Blood Glucose Level Prediction; see [Marling and
Bunescu, 2018] for details.

2 Methodology
A recurrent neural network (RNN) is a feed forward artificial
neural network that can model a sequence of arbitrary length,
using weight sharing between each position in the sequence.
In the basic RNN variant, the transition function is a linear
transformation of the hidden state and the input, followed by
a pointwise nonlinearity:

ht = tanh(Wxt + Uht−1 + b),

where W and U are weight matrices, b is a bias vector, and
tanh is the selected nonlinearity. W , U , and b are typi-
cally trained using some variant of stochastic gradient descent
(SGD).

Basic RNNs struggle with learning long dependencies and
suffer from the vanishing gradient problem. This makes them
difficult to train [Hochreiter, 1998; Bengio et al., 1994], and
has motivated the development of the Long Short Term Mem-
ory (LSTM) [Hochreiter and Schmidhuber, 1997], that to



Figure 1: High-level illustration of the LSTM network used in this
work. Each cell updates the internal memory vector ci with infor-
mation from the current input, and outputs a vector hi. ci and hi

is passed on to the next cell, and finally ht is used as input to a
fully connected output layer which applies a linear transformation
and outputs the predicted µ, σ2.

some extent solves these shortcomings. An LSTM is an RNN
where the cell at each step t contains an internal memory
vector ct, and three gates controlling what parts of the in-
ternal memory will be kept (the forget gate ft), what parts of
the input that will be stored in the internal memory (the in-
put gate it), as well as what will be included in the output
(the output gate ot). In essence, this means that the follow-
ing expressions are evaluated at each step in the sequence, to
compute the new internal memory ct and the cell output ht.
Here “�” represents element-wise multiplication.

it = σ(Wixt + Uiht−1 + bi),

ft = σ(Wfxt + Ufht−1 + bf ),

ot = σ(Woxt + Uoht−1 + bo),

ut = tanh(Wuxt + Uuht−1 + bu),

ct = it � ut + ft � ct−1,

ht = ot � tanh(ct).

We model the blood glucose levels using a recurrent neu-
ral network (see Fig. 1), working on the sequence of input
data provided by the CGM sensor system. The network con-
sists of Long short-term memory (LSTM) cells [Hochreiter
and Schmidhuber, 1997]. The whole model takes as input
a sequence of blood glucose measurements from the CGM
system and outputs one prediction regarding the blood glu-
cose level after time T (we present experimental evaluation
for T ∈ {30, 60} minutes). An RNN is designed to take a
vector of inputs at each timestep, but in the case of feeding
the network with blood glucose measurements only, the input
vectors are one-dimensional (effectively scalar valued).

The output vector from the final LSTM cell (see ht in
Fig. 1) in the sequence is fed through a fully connected output
layer having two outputs with a linear activation function,

[µ, σ2] =Wlht + bl.

The output is modeled as a univariate Gaussian distribu-
tion [Graves, 2013], using one value for the mean, µ, and
one value for the variance, σ2. This gives us an estimate of
the confidence in the models’ predictions.

The negative log-likelihood (NLL) loss function is based
on the Gaussian probability density function,

L =
1

k

k∑
i=0

− log
(
N (yi|µi, σ

2
i )
)
,

where yi is the target value from the data, and µi, σi are the
network’s output given the input sequence xi. This way of
modeling the prediction facilitates basing decisions on the
predictions.

Physiological loss function: We also trained the model
with a glucose-specific loss function [Favero et al., 2012],
which is a metric that combines the mean squared error with
a penalty term for predictions that would lead to clinically
dangerous treatments.

2.1 Experimental setup
The only preprocessing done on the glucose values are scal-
ing by 0.01 as in [Mirshekarian et al., 2017] to get the glucose
values into a range fit for training.

Hyperparmeter selection was performed by selecting pa-
tient 559 and 591 in the Ohio T1DM Dataset for Blood Glu-
cose Level Prediction [Marling and Bunescu, 2018] and train
on the first 60% of the training data for each patient, using the
next 20% of the data for early stopping, selecting the hyper-
parameters by the performance on the last 20% of the data.
We then proceeded to train five models, with different ran-
dom initializations, on a set of different configurations using
30, 120 and 240 minutes of history in combination with an
LSTM state size of 8, 32, 96 and 128. Each model was al-
lowed a maximum of 200 epochs and early stopping with a
patience of 8. The configuration which generalized best for
the two patients was using 30 minutes of glucose level his-
tory and 128 LSTM states. This can be seen in Fig. 2; note
the blue line. Using 30 minutes of history in combination
with few LSTM states results in a high RMSE score for both
patients, but 30 minutes of history in combination with 128
LSTM states works well both patients. The problem of se-
lecting the proper model and the amount of glucose level his-
tory that the model should use to make the future prediction
is something that warrants further research, and which should
be addressed in future work.

Final models: The final models were trained using 30 min-
utes of glucose level history for predictions 30 and 60 minutes
into the future, respectively. The setup for the final training
was to train on the first 80% of the glucose level training data
for each patient, and validate on the last 20%. The final mod-
els were given a low learning rate of 10−5, a maximum num-
ber of 10, 000 epochs, and an early stopping patience of 256
to allow them more time to converge. These final models
were then the only models run on the supplied test data. Note
that the there are values in the test data for which no predic-
tions have been made.

Missing data: The number of missing predictions depends
on the number of gaps in the data, i.e., the number of pair-
wise consecutive measurements in the glucose level data
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Figure 2: We display the RMSE score on the validation data to select
the number of LSTM states and the number of previous time-steps
(history) of the blood glucose signal that should be used to predict
the future value.

where the time-step is not exactly five minutes. We do not
interpolate to fill the missing values since it is unclear how
much bias this would introduce, and instead only use data for
which it is possible to create the (x, y) pairs of glucose his-
tory and regression targets at the given horizon. The greatest
number of gaps in the test data is 11 for patient 559. Using 30
minutes of history (6 time-steps) and predicting 30 minutes
into the future (6 time-steps) results in 12 ∗ 11 = 132 values
which have no predictions, since we need at least 12 consec-
utive measurements to create a (x, y) pair. The test portion of
the dataset contains 2514, 2570, 2745, 2590, 2791 and 2760
test points, which gives us a upper-bound of roughly 5% of
missing predictions for each patient. See the discussion of
missing data for further explanation.

Computational requirements: In our experimental setup
training of the model could be performed on a commodity
laptop. The model is small enough to fit in, and be used on
mobile devices (e.g. mobile phones, blood glucose monitor-
ing devices, etc). Training could initially be performed offline
and then incremental training would be light enough to allow
for training either on the devices or offline.

3 Results
The results presented in Table 1 are the root mean squared
error (RMSE) for the model when trained with the mean
squared error (MSE) loss function and the negative log-
likelihood (NLL) loss function. The results indicate that
the model performs comparably when trained with NLL and
MSE, but with the added benefit of estimating the variance of
the prediction.

The glucose level of patient 591 is harder to predict than the
glucose level for patient 570, which can be seen in the Table 1
where the RMSE for patient 570 is 16.3 and the RMSE for

Table 1: We show results individually per patient and averages in
predicting glucose levels with a 30 respectively 60 min interval. The
table show the root mean squared error (RMSE) of the predictions
when the LSTM is trained with the negative log-likelihood (NLL)
loss function and the mean squared error (MSE) loss function re-
spectively. t0 refers to the naive baseline of predicting the last value.

30 min horizon 60 min horizon
Patient ID NLL MSE t0 NLL MSE t0

559 19.5 19.5 23.4 34.8 34.4 39.7
570 16.4 16.5 19.0 28.8 28.6 31.9
588 19.3 19.2 21.8 32.5 33.1 35.8
563 19.0 19.0 20.8 30.8 29.9 34.0
575 24.8 24.2 25.6 38.4 37.3 39.7
591 25.4 22.0 24.4 36.0 36.0 38.6

µ 20.7 20.1 22.5 33.6 33.2 36.6
σ ±3.2 ±2.5 ±2.2 ±3.2 ±3.1 ±3.0
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Figure 3: We display the prediction (purple) and standard deviation
(shaded pink) compared to the ground truth (green) for patient 570
(top) and 591 (bottom). Note the much larger uncertainty for patient
591.



patient 591 is 24.6. Fig. 3 indicate that the model is able to
learn this by assigning a higher variance to the predictions
for patient 591 than for patient 570. The standard deviation
is illustrated by the pink shaded region in the figure. This is
further illustrated in the Clarke error grid plots in Fig. 4 where
we can see that for patient 570 most of the predictions are in
region A, which is considered as a clinically safe region, but
for patient 591 we can see that more predictions are in the B
region, which is still considered non-critical, but also in the
more critical D region. That is, the variance of the error in the
predictions is higher for patient 591 than for patient 570. In
particular, the model has a hard time predicting hypoglycemic
events.

4 Discussion
As the competition will provide the benchmarking we focus
on particular insights we have gained during the development
of the method.

Minimalistic ML: Compared to results in the literature for
other datasets our system based on recurrent neural networks
can predict blood glucose levels in type-1 diabetes for hori-
zons of up to 60 minutes into the future using only blood
glucose level as inputs. Generally, the minor improvement
over a naive baseline algorithm demonstrate that the predic-
tion problem is a rather difficult one, partly due to large intra
and inter patient variation. Nevertheless, our results suggest
that a substantially reduced human effort—avoiding labor-
intensive prior work by experts hand-crafting features based
on extensive domain knowledge —in designing and training
machine learning methods for precision health management
can be feasible.

Quantifying uncertainty: Our model also outputs an es-
timate of the variance of the prediction, thus measuring un-
certainty in prediction. This is a useful aspect for a system
which will be used by continuous glucose monitoring users
for making decisions about administration of insulin and/or
caloric intake. We expect that large-scale data collection of
data from many users will further improve results. The results
in Fig. 3 show the two ends of the spectrum in this uncertainty
quantification.

One principle problem is that disambiguating between
intra-patient variation and sensor errors is unlikely to be fea-
sible. An interesting research question concerns methods
which can detect sensor degradation over time or identify de-
fects by comparing sensors for the same patient in long-term
physiological; it is unclear if the often smoothed data sup-
plied by sensors is sufficient for that.

Physiological loss function: To our surprise we did not see
improvements when using a physiologically motivated loss
function [Favero et al., 2012] (results not shown), essentially
a smoothed version of the Clarke error grid [Clarke et al.,
1987]. Of course our findings are not proof that such loss
functions cannot improve results. Possibly a larger-scale in-
vestigation, exploring in particular a larger area of the param-
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Figure 4: We show the Clarke error grid plots for patient 570 (top)
and patient 591 (bottom). Note that the variance of the error in the
predictions is higher for patient 591 than for patient 570.



eter space and different training regimes might provide fur-
ther insights. Penalizing errors for hypo- or hyper-glycemic
states should lead to better real-world performance, as we ob-
served comparatively larger deviations in minima and max-
ima. One explanation for that is the relative class imbalance,
as extrema are rare. This could be countered with data aug-
mentation techniques.

Model selection: The large inter-patient variation also sug-
gest that selecting one model for all patients might yield sub-
optimal results, see Fig. 1. Consequently, precision health
apps should not only adapt parameters to individuals, but also
entertain increasing or decreasing model complexity. While
this is clearly undesirable from a regulatory point-of-view
(e.g., how to show efficacy in a trial), the differences we
observed seemed to suggest that adaption of complexity im-
proves quality of care.

Missing data: There are gaps in the training data with miss-
ing values. Most of the gaps are less than 10 hours, but some
of the gaps are more than 24 hours. The number of missing
data points account for roughly 23 out of 263 days, or 9% of
the data. The gaps could be filled using interpolation, but it is
not immediately clear how this would affect either the train-
ing of the models, or the evaluation of the models, since this
would introduce artificial values. Filling a gap of 24 hours us-
ing interpolation would not result in realistic data. Instead we
have chosen not to fill the gaps with artifical values and limit
our models to be trained and evaluated only on real data. This
has its own limitations since we can not predict the initial val-
ues after a gap, but the advantage is that model training and
evaluation is not biased by the introduction of artificial val-
ues.

Conclusion: The field is certainly in desperate need of
larger data sets and standards for the evaluation. Crowd
sourcing from patient associations would be one possibil-
ity, but differences in sensor types and sensor revisions, life
styles, and genetic markup are all obvious confounding fac-
tors. Understanding sensor errors by measuring glucose level
in vivo, for example in diabetes animal models, with several
sensors simultaneously would be very insightful, and likely
improve prediction quality. Another question concerns pre-
processing in the sensors, which might be another confound-
ing factor in the prediction. While protection of proprietary
intellectual property is necessary, there has been examples,
e.g. DNA microarray technology, where only a completely
open analysis process from the initial steps usually performed
with vendor’s software tools to the final result helped to real-
ize the full potential of the technology.

Software
The software including all scripts to reproduce the com-
putational experiments is released under an open-source
license and available from https://github.com/
johnmartinsson/blood-glucose-prediction.
We have used Googles TensorFlow framework, in particular

the Keras API of TensorFlow which allows for rapid proto-
typing of deep learning models, to implement our model and
loss functions.
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