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Abstract— The safety of autonomous vehicles needs to be
verified and validated by rigorous testing. It is expensive to test
autonomous vehicles in the field, and therefore virtual testing
methods are needed. Generative models of maneuvers such as
cut-ins, overtakes, and lane-keeping are needed to thoroughly
test the autonomous vehicle in a virtual environment. To
train such models we need ground truth maneuver labels and
obtaining such labels can be time-consuming and costly. In
this work, we use a mixture of hidden Markov models to
find clusters in maneuver trajectories, which can be used to
speed up the labeling process. The maneuver trajectories are
noisy, asynchronous and of uneven length, which make hidden
Markov models a good fit for the data. The method is evaluated
on labeled data from a test track consisting of cut-ins and
overtakes with favorable results. Further, it is applied to natural
data where many of the clusters found can be interpreted as
driver maneuvers under reasonable assumptions. We show that
mixtures of hidden Markov models can be used to find motion
patterns in driver maneuver data from highways and country
roads.

I. INTRODUCTION

Large amounts of data are being collected by leading car
manufacturers to improve, verify, and validate self-driving
systems. The number of self-driven miles needed to show
that a self-driving system is safe enough to be accepted by
the public is very large; in the order of millions or billions
of driven miles [1]. This makes verification and validation
of self-driving cars a costly process and an effort is being
made to accelerate this by testing self-driving systems in
virtual environments. Two widely studied problems for such
virtual testing environments are the generation of maneuvers
that occur on the road [2], and the generation of naturalistic
sensor output [3]–[5]. Common for both these problems is
that we usually rely on ground truth scenario labels for the
data to successfully train scenario-specific models.

In this paper we aim at clustering maneuver trajectories in
an unsupervised manner. The clustering algorithm is applied
to large amounts of field data to extract different maneuvers.
Such analysis speeds up labeling and therefore also the
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development of maneuver generation models and has several
other important applications. First, it can be used to set up
and implement realistic simulations for desired scenarios
such as cut-ins and overtakes. Second, it can be used to
extract new scenarios to extend the autonomous driving test
catalogue. Third, it can be used to learn driver intention
models for these various scenarios.

The data can include sequences of observations from
sensors, such as radars, cameras and LiDARs. These obser-
vations can, for example, be approximations of the relative
motion between the host vehicle and other tracked vehicles
on the road, the distance from the host vehicle to the
lane markings, or the number of lanes on the road. The
hidden Markov model (HMM) is useful here because these
sequences are of varying length and exhibit an asynchronous
and noisy behavior. For example, when a car cuts in front of
the host vehicle the actual lane-change can be delayed for
different cars, resulting in an asynchronicity in the “cut-in
motion trajectories”.

General methods are needed to find patterns and natural
groupings in this type of data to organize and understand
them. Finding groups of similar motion trajectories helps
us discover typical motion patterns, detect anomalies, create
models of maneuvers, and summarize the data in com-
prehensible ways for further analysis. This is not trivially
handled by standard clustering methods such as k-means
or hierarchical clustering, since standard distance measures,
for example the Euclidean distance, are not well defined
for sequences of unequal length and also overemphasize
asynchronicity in the sequences.

In this paper we study a probabilistic model-based clus-
tering method, which is used to cluster maneuver trajectory
data. The method uses a mixture of hidden Markov models
(MHMM) to find natural groupings in the trajectory data.
The HMM is a flexible model which can learn asynchronous
and noisy behaviors, and it is not restricted to same length
sequences, which makes it a good choice for this type of
data. Further, by using a mixture of HMMs we can do soft
assignment of motion trajectories. This allows trajectories
which lie on the border between neighboring maneuvers to
be partially assigned to several clusters. We show that the
method can be used to find typical motion patterns in a data
set of multivariate motion trajectories where each motion
trajectory consists of the change in relative position and
velocity of the host vehicle and the tracked vehicle on the
road, observed at discrete time steps from the time when it
enters the host vehicle’s field of view until it exits its field
of view.
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Fig. 1. We illustrate of how hard clusters can be derived from the mixture of HMMs. The mixture is first fitted to the original data (leftmost plot). The
posterior probability, or responsibility, of the model given each sequence, O(i) ∈ {O(1)

1:T1
, O

(2)
1:T2

, . . . , O
(L)
1:TL

}, of observations is then computed using
Bayes’s theorem, and a hard assignment is made for each sequence to the cluster which takes most responsibility for it. The first mixture component λ(1)

learns the behaviour where the mean of the signal tends to increase over time, and the second mixture component λ(2) learns the behavior where the mean
of the signal tends to decrease over time. Each mixture component is a left-to-right HMM with three hidden states, and the arrows in each HMM indicate
the possible transitions. The dashed circles indicate the start state (Ss) and the end state (Se).

II. PREVIOUS WORK

To the best of our knowledge, HMMs were first used
in [6] to cluster time series data using a “composite” HMM,
which is equivalent to a mixture of HMMs. For the sake of
clarity we keep to the mixture formulation as it is a more
well-known framework given the large body of research on
mixture models.

The composite HMM was evaluated on a data set gener-
ated by two different HMMs with favorable results. Note
that the generated data matched the assumptions of the
clustering method perfectly. A similar method was studied
in [7], where a Bayesian clustering framework for temporal
data was derived.

In [8] a mixture of HMMs was applied to motion trajecto-
ries derived by a face tracking system from video of a person
using a “Camera Mouse” system, and in [9] it was used to
analyze gene expressions in bioinformatics.

A similar system to the one presented in this paper, using a
mixture of linear dynamic models, was used for unsupervised
motion learning of relative movement between pedestrians
and the host vehicle in urban environments [10], and the
authors stress that unsupervised motion learning will have a
great impact on driver assistance systems.

In this work we will further study a probabilistic model-
based clustering approach for motion trajectories. In partic-
ular, we use mixtures of HMMs to perform unsupervised
motion learning of the relative movement between the host
vehicle and other tracked cars on the road.

III. CLUSTERING METHOD

In this section we give a brief introduction to HMMs
and mixtures of HMMs. See [11] for a more detailed
introduction to HMMs and [8] for a more detailed overview
of the parameter estimation formulas used to learn the model
parameters.

A. Hidden Markov Model

A HMM can be used to model stochastic processes with
an implicit temporal dependency among the observed values.
In this paper, we use a first-order HMM with multivariate
Gaussian observation densities, and assume that the states of
the data-generating system fulfills the Markov property, that
is, P(Qt|Qt−1, . . . , Q1) = P(Qt|Qt−1), see [11] for details.

An HMM is defined by a set of N states S =
{1, 2, . . . , N}, a transition probability matrix A = {aij},
a set of multivariate Gaussian emission distributions B =
{bj(·)} where bj(·) = N (·;µj ,Σj), and the initial transition
vector π = {πj}, where 1 ≤ i, j ≤ N .

Here, aij is the probability of making a transition from
state i to state j, bj(·) is the Gaussian density of state j
defined by the mean vector µj and the covariance matrix Σj ,
and πj is the probability of starting in state j; 1 ≤ i, j ≤ N .

Let λ = (π,A, µ,Σ) be the complete parameter set of
such a HMM. The likelihood of an observed sequence O
can then be computed by

P(O|λ) =
∑
all Q

P(O|Q,λ)P(Q|λ), (1)



using the forward-backward procedure [11], where Q =
{q1, . . . , qT } is a fixed latent state variable sequence for the
observed sequence O = {o1, . . . , oT }.

To reflect asynchronous behavior in the same driving
scenario, we use a left-to-right topology for each HMM in
the mixture. Figure 1 illustrates how a mixture of HMMs can
be fitted to synthetic data to learn two noisy asynchronous
behaviors. The left-to-right topology restricts the transitions
of the HMM, and it can thus be thought of as a piecewise
constant stochastic function. Figure 1 shows that the first
mixture component λ(1) learns a behavior where the mean
of the signal tends to increase over time. That is, the Gaussian
observation distributions in state one, two and three of the
HMM each learn a mean that increases with the state number,
and a roughly unit variance explaining the noise. The left-to-
right transitions, illustrated with arrows in the figure, learn
the asynchronous behavior, as is evident from the different
time points at which change occurs. Similarly, the second
mixture component λ(2) learns a behavior where the mean
of the signal tends to decrease over time. The parameters
λ(1) and λ(2) for the two HMMs can be learned from the
data by estimating a solution to a maximum likelihood (ML)
problem.

Given a finite set of finite multivariate sequences
O = {O(1)

1:T1
, O

(2)
1:T2

, . . . , O
(L)
1:TL
}, where O1:T =

{O1, O2, . . . , OT } and Ti is the length of sequence i,
we want to solve the ML problem

λ∗ = arg max
λ

L∏
l=1

P(O
(l)
1:Tl
|λ). (2)

The latent state variables make solving for global
maximums impossible, therefore we use the Expectation-
Maximization (EM) algorithm, known as Baum-Welch in the
HMM literature [11], to find a local maximum. (See [8] for
the complete parameter estimation formulas.)

B. Finite Mixture of Hidden Markov Models

In this section we present the model-based clustering
method used in this paper, where the mixture compo-
nents are HMMs. We assume that the true stochastic pro-
cess, from which we have observed the sequences O =

{O(1)
1:T1

, . . . , O
(L)
1:TL
}, is a mixture distribution of K hidden

Markov models.
Let P(O|λ(k)) be the likelihood of sequence O given

the kth HMM parameterized by λ(k), and let wl =
(wl1, wl2, . . . , wlK) be the cluster responsibility vector for
the lth sequence, where K is the number of mixture compo-
nents, or clusters, used interchangeably throughout the rest
of the paper.

The cluster responsibility vectors constitute a soft clus-
tering of the sequences. There is nothing, to the best of our
knowledge, suggesting that there are only a finite set of driver
maneuvers that occur on the road. Instead it is reasonable
to believe that there are commonly occurring maneuvers
leading to dense regions in a continuous space, with am-
biguous maneuvers occurring between these dense regions.

The clustering should reflect this. We thus defer the hard
assignments until it is needed, and preserve the information
about, and quantify, the uncertainty in the clustering.

The mixture of HMMs is parameterized by θ =

{λ(k), p(k)}Kk=1, where λ(k) is the kth HMM of the mixture,
and p(k) is the mixing coefficient of mixture component
k. The likelihood of an observed sequence O(l)

1:Tl
given the

MHMM parameterized by θ can then be computed using

P(O
(l)
1:Tl
|θ) =

K∑
k=1

P(O
(l)
1:Tl
|λ(k))p(k), (3)

if we assume that p(k) is the prior probability of the kth
mixture component. We then want to solve the ML problem

θ∗ = arg max
θ

L∏
l=1

K∑
k=1

P(O
(l)
1:Tl
|λ(k))p(k), (4)

but it is not known how to solve this optimally. Therefore, we
use the EM algorithm. The iteration continues until a local
optimum is reached. Note that the optimization surface may
be non-convex with many local optima. It is therefore nec-
essary to let the model converge many times with different
random initializations. (See [8] for the complete parameter
estimation formulas.)

C. Random Initialization

Initially each HMM has identical multivariate Gaussian
emission distributions centered around zero with unit vari-
ance for each state. Because of the left-to-right topology of
the HMM the transition probabilities are completely specified
by the self transition probabilities in each state. The self
transitions for each HMM are chosen such that the expected
durations of the HMMs are uniformly distributed in the
interval [Tmin, Tmax], where Tmin and Tmax are the length of
the shortest and longest sequences in the data respectively.
The HMMs are then each fitted to the data set with weights
w ∈ [0, 1] drawn uniformly at random for each sequence. The
HMMs, or mixture components, will then explain random
sub-populations of the data which has been shown to be
more effective than randomizing the mixture parameters [9].
The mixture of these HMMs is then fitted to the data.

IV. MODEL SELECTION

The clustering method presented requires that the number
of clusters K, and the topology of the HMMs, is known be-
forehand. In most real-world applications this is not the case.
Therefore, a method to choose among the many possible
mixture configurations is needed. In statistics this problem
is known as model selection, and a number of different
criteria have been proposed to estimate solutions to this
problem [12].

A commonly used criterion is the Bayesian information
criterion (BIC) [13]. BIC is based on Bayes factors, and
balances the likelihood of the data and the number of free
parameters.



A. Integrated Classification Likelihood

We use the integrated classification likelihood criterion
(ICL) [14], an extension of BIC that penalizes clusterings
with a high uncertainty, or entropy. It is defined as

ICLK,M = −2L(θ̂K,M |O) +dK,M logN + 2ENK,M , (5)

where

ENK,M =

K∑
k=1

L∑
i=1

−ŵij log ŵij , (6)

is the entropy in the clustering, and

ŵij = P(λ(i)|O(j)
1:Tj

; θ̂K,M ). (7)

is the responsibility of the ith mixture component for the
jth sequence. In (5) K denotes the number of mixture
components, M denotes the number of hidden states in each
mixture component, L(·|O) is the likelihood function of the
model parameters given the data, θ̂K,M is the ML estimate
of the model parameters, and dK,M is the number of free
parameters in the model. We then choose

K∗,M∗ = arg min
K,M

ICLK,M , (8)

where 1 ≤ K ≤ Kmax and 1 ≤ M ≤ Mmax, which will be
referred as a search over the model configurations.

B. Consensus Index

We also use the consensus index (CI) [15], which is based
on the hypothesis that a good model configuration will find
similar clusterings with different random initializations. Let
UK,M = {U1, U2, . . . UB} be a set of B clusterings, each
found with K mixture components and M hidden states.
The CI is then defined as

CI(UK,M ) =
∑
i<j

AM(Ui, Uj), (9)

where AM is an agreement measure for the clusterings. We
use the extended corrected rand index [16] as the agreement
measure for the clusterings, which is an extension of the
corrected rand index to soft clusterings. We then choose

K∗,M∗ = arg max
K,M

CI(UK,M ), (10)

where 2 ≤ K ≤ Kmax and 2 ≤ M ≤ Mmax as the optimal
number of mixture components and hidden states.

V. DATA SET

All data have been collected by the Volvo Car Corporation.
The data consists of detected and tracked vehicles, obtained
using a radar and a camera sensor. In addition, collected
and processed data from a LiDAR sensor is also available
in the dataset. The relative position between the host vehicle
and other tracked vehicles, and their relative velocity are the
features considered in this work.

Let the point (x
(l)
t , y

(l)
t ) be a measurement of the relative

lateral and longitudinal distance, at time t, between the host
vehicle and the lth tracked car on the road, and let (ẋ

(l)
t , ẏ

(l)
t )

be the relative velocity, where 1 ≤ t ≤ Tl and 1 ≤ l ≤ L.

A complete data set is defined by O = {O(l)
1:Tl
}
L

l=1
where

O
(l)
t = (x

(l)
t , y

(l)
t , ẋ

(l)
t , ẏ

(l)
t ), L is the number of tracked cars

and Tl is the total length of the lth tracking.
We have studied two different data sets of this type. One

collected in a controlled environment, which means that we
have access to ground truth labels, and one collected mainly
on highways and country roads.

A. Data from Test Track

This data set has been collected at the Astra Zero test
track near Gothenburg, Sweden. We refer to the data as
data set 1. There are two classes of maneuvers in the data
called overtakes and cut-ins. These are real car maneuvers
but collected in a controlled environment. An overtake is
when the host vehicle enters the tracked vehicle’s lane and
the tracked vehicle changes lane to give way for the host
vehicle, and a cut-in is when the tracked vehicle enters the
host vehicles lane close to the host vehicle. Each class has
four distinct sub-classes, and each sub-class was measured
8–10 times. Resulting in a total of 77 motion trajectories for
the whole data set.

TABLE I
DESCRIPTIVE STATISTICS OF DATA SET 1. THE RELATIVE POSITION IS IN

METERS AND THE RELATIVE VELOCITY IN METERS PER SECOND.

Descriptive Statistics

x
(l)
t y

(l)
t ẋ

(l)
t ẏ

(l)
t

mean 0.93 24.22 0.06 0.07
std 1.06 13.86 0.34 0.09
min -1.10 9.42 -2.50 -0.32
max 3.77 74.34 1.62 0.69

count 4,677
mean length 60.74
std length 11.28

There are therefore two different ground truth label sets
for data set 1. In label set 1 each of the eight sub-classes
is considered a unique label. And in label set 2 each of the
two main classes, that is, overtake and cut-in, is considered
a unique label. (See Table I for summary statistics of data
set 1.)

B. Data from Highways and Country Roads

This data was collected by the Volvo Car Corporation on
a several-day expedition in Europe, passing through different
countries, and will be referred to as data set 2. It was
processed by a motion detection algorithm and an image
recognition algorithm to classify the tracked objects, and
only motion trajectories of other cars are kept. The tracking
of the relative motion of the host vehicle and the tracked
vehicle starts when the tracked vehicle enters the sensor’s
field of view, and ends when it exits its field of view. Note
that, for example, occlusion of a tracked car by another object
may result in several trackings of the same car; meaning that
some trajectories are partial trackings of the same car.

We consider only motion trajectories between 4 and 8
seconds. The sampling rate of the sensor is 10 hertz, so



TABLE II
SUMMARY STATISTICS OF DATA SET 2. THE RELATIVE POSITION IS IN

METERS AND THE RELATIVE VELOCITY IN METERS PER SECOND.

Descriptive Statistics

x
(l)
t y

(l)
t ẋ

(l)
t ẏ

(l)
t

mean -0.47 28.38 0.14 1.34
std 3.05 16.80 0.60 4.80
min -4.49 -11.16 -5.18 -18.06
max 4.50 109.34 7.17 15.33

count 81,188
mean length 59.83
std length 11.83

the length of the sequences range between 40 and 80
observations. We assume that the lane width on European
highways and country roads is 3 meters and consider only
tracked cars which are within one and a half lane width
of the host vehicle. The resulting data set consists of 1,357
trajectories with a total of 81,188 discrete-time observations.
(See Table II for summary statistics on data set 2.)

C. Data Standardization

All features are standardized into a [0, 1] range before
training. This is done by

z
(l)
t =

x
(l)
t −min (x)

max (x)−min (x)
, (11)

where z(l)t ∈ [0, 1] is the standardized feature, 1 ≤ l ≤ L,
1 ≤ t ≤ Tl, and min (x) and max (x) are the minimum and
maximum value, respectively, of the feature x, in the whole
data set. The standardization is invertible.

VI. RESULTS AND DISCUSSION

In this section we present the results of applying the
clustering method to the two data sets presented in the pre-
vious section. The method has been implemented using the
Python package pomegranate [17], which is a Python/Cython
implementation of probabilistic models. The implementation
allows stacked models, which is key for the implementation
of the mixture model, since we have stacked a general
mixture model on top of hidden Markov models, which in
turn are stacked onto multivariate Gaussian distributions.

TABLE III
A SUMMARY OF THE TRAINING PARAMETERS USED WHEN FITTING THE

MIXTURE OF HMMS TO THE DATA SET.

Simulation B τ nmax

D1F1 20 10 1000
D1F2 20 10 1000
D2F3 3 200 1000

Table III show the training parameters used for each
simulation. The simulations are named D1F1 to mean data
set 1 using feature set 1, D1F2 to mean data set 1 using
feature set 2, and so on. In the table, B is the number of
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D1F2. We have omitted M = 2 because it cluttered the figures and it is
clearly ruled out by ICL.

cluster solutions found for each model configuration, that
is, the number of random initializations, τ is the stopping
threshold for the EM algorithm when fitting the mixture
model, and nmax is the maximum number of iterations for
the EM algorithm. We have used a linear decay of 0.8 in all
simulations.

A. Simulations on Data Set 1

We use two different feature sets when training on data
set 1. Feature set 1 consists of the relative position between
the host vehicle and the tracked vehicle (xt, yt), and fea-
ture set 2 consists of their relative velocity (ẋt, ẏt). The
two are called D1F1 and D1F2 respectively. We perform
a model configuration search over the number of clusters
K = [2, 4, 6, 8, 10, 12, 14], and the number of hidden states
M = [2, 5, 10, 15, 20] in both D1F1 and D1F2.

We see in Figure 2 that according to ICL and CI we should
choose the number of mixture components between 6 and 12,
and the number of hidden states between 10 and 20 for D1F1.
The estimated number of states is consistent with previous
results suggesting that a good rule of thumb is to choose
the number of states as a third of the average length of the
observed sequences [9] which is roughly 20 for this data.



We see in Figure 3 that according to ICL we should choose
the number of mixture components between 4 and 6, and the
number of hidden states between 15 and 20 for D1F2. In
this case, however, there is a disagreement between ICL and
CI, and according to the CI criterion we should choose the
number of mixture components to be 2, and the number of
hidden states between 15 and 20. It also indicates a higher
clustering consensus around K = 10 when M = 5, but
it is clear by the ICL criterion that M = 5 is not a good
choice, and it is thus ruled out. It is not trivial to resolve
this disagreement between the two criteria, and ideally they
should agree. Instead we have to use expert judgment and
explore both alternatives.

The local optima for ICL are M = 10 and K = 10 for
D1F1 and M = 15 and K = 4 for D1F2. However, we
have also noted that there is a good consensus among the
clusterings at K = 2 according to CI. Since we have access
to ground truth labels in data set 1, and already know that
K = 2 could potentially be the clustering with the cut-in and
overtake maneuvers, we choose to ignore K = 4 suggested
by ICL and continue with K = 2 for this analysis.

TABLE IV
THE ADJUSTED MUTUAL INFORMATION SCORE FOR THE HARD

CLUSTERINGS DERIVED FROM THE TWO BEST MODELS ON DATA SET 1.

Simulation Label Set 1 Label Set 2

D1F1 (M=10, K=10) 0.84 0.27
D1F2 (M=15, K=2) 0.32 1.0

In Table IV we see the adjusted mutual information [18]
score for the partitions found by each estimated model. In
D1F1 with M = 10 and K = 10 we find a clustering which
agrees with label set 1, that is, the specific maneuvers. And
in D1F2 with M = 15 and K = 2 we find a clustering
which agrees with label set 2, that is, the more generic cut-
in and overtake maneuvers. In fact, it finds the ground truth
clustering, suggesting the importance of the feature vector
choice, and the criterion choice. Using CI as a complement
to ICL we were able to detect structure in the data which
we might otherwise have missed.

Figure 4 shows the clusters found in D1F2. The relative
position of the host vehicle and the tracked car is scatter
plotted where the color gradient, which changes from dark
(t = 0) to bright (t = Li), indicates time.

B. Simulations on Data Set 2

From the results on data set 1 we saw that the relative
velocity is an important feature for finding the types of
maneuvers we are looking for, but we also want to emphasize
that lane changes are an important part of the maneuver.
Therefore, in the simulation on data set 2 we use the feature
vector (xt, ẋt, ẏt), which consists of the relative lateral
position and the relative velocity. We call this D2F3.

We assume M = 15 since the sequences in this data
set are roughly of the same length as in data set 1,
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Fig. 4. The figure show the two clusters found in the Astra Zero test track
data in D1F2. In the left plot we see the cluster of cut-ins, where the tracked
car cuts in front of the host car from the right lane, and in the right plot
we see the cluster of overtakes, where the host car changes into the tracked
car’s lane, and the tracked car starts to give way for the host car.

and perform a model configuration search over K =
[5, 10, 20, 40, 60, 65, 70, 75, 80, 85, 90, 100, 150].

According to ICL, an optimum exists at K = 85. The CI
criterion was not used in this analysis since it takes a lot
of time to fit each model on this larger data set, and the CI
criterion requires us to fit many models for each parameter
configuration. The model configuration search can easily be
run in parallel, so a possible solution to this problem is more
CPU cores.

We trained five models, each with a left-to-right topology,
using K = 85 mixture components and M = 15 hidden
states. Each of the five runs was randomly initialized and we
set the early stopping threshold to 50 to let the final models
train longer than during model selection. The best performing
model according to ICL out of the five was chosen as the
final model, and used to cluster the data set.

In Figure 5 we show four examples of clusters found in
data set 2 using the feature vector (xt, ẋt, ẏt). The dashed
red marks indicate the assumed lane widths. Note that these
are not the real lane markings, since everything is relative to
the host car, but under the additional assumption that either
the host car or the tracked car tends to be at the center of its
lane, these markings can be thought of as representing the
true lane markings which helps us interpret the clusters.

First, in the top-left plot of Figure 5, we see that the
tracked car and the host vehicle keeps roughly the same
direction, and the tracked car tends to start close to the host
vehicle and end up farther away, which can be explained by
the tracked car driving past the host vehicle. We also note
an anomaly in the cluster showing that the clusters are not
perfect. A close inspection shows that the number of initial
samples that lie on the horizontal line in the anomlay are
much fewer than the ones which agree with the rest of the
cluster, which may be the reason for the obtained clustering.

Second, in the top-right plot of Figure 5 we see that the
two vehicles again keep roughly the same direction, but that
the tracked car tends to start farther away from the host
vehicle, and end up closer to it. The cluster can be explained



by the host vehicle driving past the tracked vehicle.
Third, in the bottom-left plot of Figure 5 we see that the

tracked vehicle moves into the same lane as the host vehicle
while driving past the host vehicle, which can be explained
by a cut-in from the left lane, or the host vehicle moving
into the same lane as the tracked vehicle while the tracked
vehicle drives faster than the host vehicle. The maneuver is
ambiguous because we use the relative motion of the two
cars, meaning that the movement of either car could result
in the observed change in relative position.

Last, in the bottom-right plot of Figure 5 we see that the
tracked vehicle moves one lane width to the right while the
host vehicle drives past the tracked vehicle, which can be
explained by the tracked vehicle changing lane to allow way
for the host vehicle, or the host vehicle changing lane to
drive past the tracked vehicle.

The plots show only a small subset of the clusters found.
Other vehicle maneuvers such as cut-in from the other lane,
the host vehicle and the tracked vehicle passing each other
in different lanes, the host vehicle following the tracked
vehicle and so on are also observed in the clusters. We
do detect some duplicate clusters with maneuvers that an
expert would probably classify as the same maneuver, but
where the clustering algorithm finds structure that is not
immediately clear to the human observer. This can be
an advantage if maneuvers have previously been defined
heuristically, and the clusters are used to verify that these
maneuver definitions cover the maneuvers that actually occur
on the road. However, it could also be a disadvantage if the
learned clusters are used as ground truth labels when training
scenario-specific models. A compromise should probably be
used where the clusters are used as a guide during both the
labeling and maneuver verification process. The method also
finds smaller clusters, accounting for a small proportion of
the data, between 10 and 15 percent, which are not easily
explained by a driver maneuver. These may be less frequently
occurring complex maneuvers that we have not been able to
interpret.

C. Summary of the Results

We have used three different feature sets for the cluster-
ings. The first was the relative position (xt, yt) of the host
vehicle and the tracked car, the second was their relative
velocity (ẋt, ẏt), and the third was a combination of the
two. When using the relative position we are asking the
question “What are the typical relative motions between the
host vehicle and the tracked cars, and where, in relation to
the host vehicle, do they typically occur?”, and using the
second feature set we are simply asking “What are the typical
relative motions between the host vehicle and the tracked
cars?”. Depending on which feature set we use, we expect
different clusters to be found.

Clustering using the relative position in data set 1 results
in very specific maneuvers, and clustering using the relative
velocity results in more generic maneuvers such as overtakes
and cut-ins. It suggests that it is important to choose the
features with care so that the clustering of those features
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Fig. 5. The figure shows four different motion patterns found when
clustering the expedition data: The vehicles keep roughly the same direction
while the tracked vehicle drives past the host vehicle (top-left). The vehicles
keeps roughly the same direction while the host vehicle drives past the
tracked vehicle (top-right). The tracked vehicle moves into the same lane
as the host vehicle while driving past it (bottom-left). The tracked vehicle
moves one lane width to the right while the host vehicle drives past it
(bottom-right).

represent relevant behaviors. In this case we wanted to find
typical driver maneuvers with an emphasis on lane changes,
and thus used the relative lateral position and the relative
velocity of the host car and the tracked cars for the final
clustering of the large data set.

The choice of the model configuration (K,M) could
possibly be done in a more principled way using, for
example, a countably infinite mixture model [19]. However,
such methods are computationally expensive which was a
limiting factor in this work.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that mixtures of hidden Markov models
can be used to find typical patterns in relative motion
trajectories of driver maneuvers on highways and country
roads. Our results suggest that the choice of the feature vector
affects the type of clusters found. In particular, the relative
velocity between the host vehicle and other tracked vehicles
on the road seems like a good feature choice when looking
for typical driver maneuvers.

A natural next step is to segment the maneuvers into
“partial-maneuvers” such as left-turn, right-turn, keeping
straight, and so on using a MHMM fitted to windowed



sequences of the data. The clustering can be used to segment
the maneuvers into partial-maneuver categories, and the
learned segments can be used to train a HMM for maneuver
generation. This has previously been used for segmentation
of video sequences [20]. We have implemented a proof
of concept of such a segmentation model with promising
preliminary results.

Other potential application areas for the method are com-
plex driving behaviors in other kinds of traffic scenarios, for
example, free, congested, and saturated traffic, and driving
behaviors at signalized intersections; all potential research
directions for future work.
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