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Abstract

In federated learning, clients share a global model
that has been trained on decentralized local client
data. Although federated learning shows signifi-
cant promise as a key approach when data cannot
be shared or centralized, current methods show
limited privacy properties and have shortcomings
when applied to common real-world scenarios, es-
pecially when client data is heterogeneous. In this
paper, we propose an alternative method to learn a
personalized model for each client in a federated
setting, with greater generalization abilities than
previous methods. To achieve this personalization
we propose a federated learning framework using
a mixture of experts to combine the specialist na-
ture of a locally trained model with the generalist
knowledge of a global model. We evaluate our
method on a variety of datasets with different lev-
els of data heterogeneity, and our results show that
the mixture of experts model is better suited as a
personalized model for devices in these settings,
outperforming both fine-tuned global models and
local specialists.

1. Introduction

In many real-world scenarios, data is distributed over a large
number of devices or across many organizations, due to
privacy concerns or communication limitations. Federated
learning is a framework that can leverage this data in a
distributed learning setup. This allows for the use of all
participating clients’ compute power, with the added benefit
of a large decentralized training data set, while enhancing
privacy and data security.
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Figure 1. Federated mixtures of experts, consisting of a global
model £, and local specialist models f¥ using local gating func-
tions h*. Some clients opt-out from federation, not contributing to
the global model and keeping their data completely private.

For instance, in keyboard prediction for smartphones, thou-
sands or even millions of users produce keyboard input that
can be leveraged as training data. The training can ensue
directly on the devices, doing away with the need for costly
data transfer, storage, and immense compute on a central
server (Hard et al., 2018). The medical field is another
example area where data is often extremely sensitive and
cannot be shared externally, thus requiring distributed and
privacy-protecting approaches.

The optimization problem that we solve in a federated learn-
ing setting is

1 X
o g 2 B s ] )
where ¢}, is the loss for client k and (x,y) samples from
the kth client’s data distribution p,. A central server is
coordinating training between the K local clients. The
most prevalent algorithm for solving this optimization is the
federated averaging (FEDAVG) algorithm (McMahan et al.,
2017). In this solution, each client has its own client model,
parameterized by w” which is trained on a local dataset
for E local epochs. When all clients have completed the
training, their weights are sent to the central server where
they are aggregated into a global model, parameterized by
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wg. In FEDAVG, the £ client models are combined by
parameter averaging, weighted by the size of their respective
local datasets:

t+1 Nk k
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where ny is the size of the dataset of client kK and n =
>k Nk Finally, the new global model is sent out to each
client, where it constitutes the starting point for the next
round of (local) training. This process is repeated for a
defined number of global communication rounds.

The averaging of local models in parameter space generally
works but requires some care to be taken in order to ensure
convergence. (McMahan et al., 2017) showed that all local
models need to be initialized with the same random seed
for FEDAVG to work. Extended phases of local training
between communication rounds can similarly break training,
indicating that the individual client models will over time
diverge towards different local minima in the loss landscape.
Similarly, different distributions between client datasets will
also lead to divergence of client models (McMahan et al.,
2017).

Depending on the use case, however, the existence of lo-
cal datasets and the option to train models locally can be
advantageous: specialized local models, optimized for the
data distribution at hand may yield higher performance in
the local context than a single global model, although typi-
cally at the cost of generalization performance. Keyboard
prediction, for example, based on a global model may rep-
resent a good approximation of the population average, but
could provide a better experience at the hands of a user
when biased towards their individual writing style and word
choices. This raises an important question — when is a global
FL-trained model better than a specialized local model? A
specialist would be expected to perform better than a global
generalist in a highly non-iid setting, whereas the global
generalist would be expected to perform better in an iid
setting.

There are several ways client distributions can be non-
identical. The conditional distributions P;(z|y) on all
clients 7+ may be the same, but the marginal distributions
P;(z) may vary (covariate shift) or P;(y) may vary (prior
probability shift). Further, if the marginal distribution P(y)
is the same on all clients, the conditional P;(x|y) may vary
(same label, different features) or P(x) is the same, but the
conditional P;(y|z) varies (same features, different label).
In this work we study non-identical distributions in the form
of prior probability shift, although we hypothesize that our
proposed method can handle other distributional shifts as
well and would be an interesting direction for future work.

To address the issue of specialized local models within the
federated learning setting, we propose a general framework

based on a mixture of experts (Jacobs et al., 1991). In this
work we have one mixture of experts per client, each com-
bining one local specialist model and one global model.
Each client has a local gating function that performs a
weighting of the experts dependent on the input data. First,
the global model is trained using FEDAVG. This is followed
by training of all clients’ local specialist models, initialized
with the trained federated global model. This is followed by
training of the entire mixture, i.e., the local and global mod-
els as well as the gating function. A common problem with
fine-tuned specialist models is that although they achieve
better accuracy on local test data, they do not generalize
as well as a global model. However, in our work we show
that we can reach the same local accuracy on client data as
a fine-tuned model, while retaining superior generalization
performance.

While standard federated learning already shows some pri-
vacy enhancing properties, it has been shown that in some
settings, properties of the client and of the training data may
be reconstructed from the gradients communicated to the
server (Wang et al., 2019). Therefore, we will work with
a stronger notion of privacy in this paper. While existing
solutions may be private enough for some settings, we will
assume that clients requiring privacy for some of their data
need this data not to have any influence on the training of
the global model at all. Instead, our framework allows for
a complete opt-out from the federation with some or all of
the data for any client. Clients with such preferences will
still benefit from the global model and retain a high level of
performance on their own, skewed data distribution. This
is important when local datasets are particularly sensitive,
as may be the case in medical applications. Our experimen-
tal evaluations demonstrate the robustness of our learning
framework with different levels of label heterogeneity in the
data, and under varying fractions of opt-out clients.

2. Related work

Distributed machine learning has been studied as a strategy
to allow for training data to remain on the clients, giving
it some aspects of privacy, while leveraging the power of
learning from bigger data and compute (Konecny et al.,
2016; Shokri & Shmatikov, 2015; McMahan et al., 2017;
Vanhaesebrouck et al., 2017; Bellet et al., 2018). The feder-
ated averaging algorithm (McMahan et al., 2017) has been
influential and demonstrated that averaging of the weights
in neural network models trained separately at the clients is
successful in many settings, producing a federated model
that demonstrates the ability to generalize from limited sub-
sets of data at the clients. However, it has been shown that
federated averaging struggles when data is not independent
and identically distributed among the clients, e.g., in the
problem of prior probability shift. This illustrates the need
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for client personalization within federated learning (Kairouz
et al., 2019; Hsieh et al., 2020).

In general, addressing class imbalance is still a relatively
understudied problem in deep learning (Johnson & Khosh-
goftaar, 2019). A common approach for personalization on
skewed label distributions is to first train a generalist model
and then fine-tune it using more specific data. This approach
is used in meta-learning (Finn et al., 2017), domain adap-
tation (Mansour et al., 2009), and transfer learning (Oquab
et al., 2014). For the distributed setting, fine-tuning was
first proposed by (Wang et al., 2019) who used federated
averaging to obtain a generalist model which was later fine-
tuned locally on each client, using each client’s specific
training data. Some work has been inspired by the meta-
learning paradigm to learn models that are specialized at the
clients (Jiang et al., 2019; Fallah et al., 2020). (Arivazhagan
et al., 2019) combined this strategy and ideas from transfer
learning with deep neural networks and presented a solution
where shallow layers are frozen, and the deeper layers are
retrained at every client.

(Zhao et al., 2018) propose a strategy to improve training
on non-iid client data by creating a subset of data which is
globally shared between all clients. (Hsu et al., 2019) show
that performance degrades when client distributions shift,
and propose to solve the problem via server momentum.
Recent strategies have also explored knowledge distillation
techniques for federated learning (Jeong et al., 2018; He
et al., 2020; Lin et al., 2020), which show promising results
in non-iid settings.

Mixing models. (Deng et al., 2020) proposed to combine
a global model w trained using federated averaging, with
a local model v with a weight «;. To find optimal «; they
optimize o = argming,cpo,1] fi (v + (1 — o) w) in
every communication round. While this weighting scheme
will balance the two models, it is unable to adapt to the
strengths of the different members of the mix.

(Hanzely & Richtérik, 2020) proposed a solution that pro-
vides an explicit trade-off between global and local models
by the introduction of an alternative learning scheme that
does not take the full federation step at every round, but
instead takes a step in the direction towards the federated
average.

Mixture of experts have previously been used for learning
private user models in a federated setting (Peterson et al.,
2019). Although experiments are limited, the authors show
that a mixture of a local and global model is more robust to
differential privacy noise than a global model trained with
federated averaging.

Contributions. In this work, we integrate mixture of ex-
perts into a non-iid federated setting in order to learn a per-
sonalized federated model for each client. More specifically,

we leverage the strengths of a global model trained with
federated averaging and a local model trained locally on
each client. We show empirically on multiple datasets that
our method outperforms both a locally trained model and
a global federated model fine-tuned on test data from each
client. Our results also show that our proposed method gen-
eralizes better than both baseline personalization methods.
Further, we show our proposed method to be robust against
low client participation, making it possible for clients to
opt out from the global federation, and to keep the data
completely private for these clients.

3. Federated learning using a mixture of
experts

In this work, we present a framework for model personal-
ization in a non-iid federated learning setting that builds on
federated averaging and mixtures of experts. Our frame-
work includes a personalized model for each client, which
consists of a mixture of a globally trained model and a
locally trained specialist. The local models never leave
the clients, which gives strong privacy properties, while
the global model is trained using federated averaging and
leverages larger compute and data. In our framework, as
illustrated in Figure 1, clients can choose to opt-out from
the federation. This ensures complete privacy for their data,
as no information from their data ever leaves the client.

Let f, be the global model with parameters w,. We denote
the index of clients by k£ and the local specialist models
by f¥ with parameters w¥. The gating function is denoted
by h¥, parameterized with wﬁ Training in the proposed
framework is divided into three main parts. First, a global
model f is trained using federated averaging using opt-in
data (see Section 3.1). Second, a local specialist model ff
is created for each client, initialized with the weights of the
global model and fine-tuned using the local opt-in data on
the client. Third, we train the mixture of experts

R (@) fE(2) + (1 = h*(2)) fy (). 3)

We freeze the weights of f,, only updating the local spe-
cialist ¥ and the gating model h* on each client. By freez-
ing the weights of f, in the last step, we ensure that the
generalist knowledge in the model is not unlearned in the
fine-tuning procedure.

As the mixture is trained, the two expert models f, and f,
compete against each other, while the gating function sends
an error signal guiding the winner of the two experts for
every input. Over the course of this procedure, the gating
function will learn to separate the input space given how
well each expert perform on the task.
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3.1. Opting out from federation

Users requiring high levels of privacy may not want to par-
ticipate in the federation and disclose their locally trained
model to a central server. For this reason, our proposed
framework allows for clients to opt-out from federation.
Each client may arbitrarily partition its data into a part that
is not used in the federation, and a part that is. No infor-
mation from the opt-out data will ever leave the client. The
system will still leverage learning from this data by using it
to train the local specialist model f* and the gating model
h*. This is a very flexible and useful property as it allows
for the use of sensitive data in training of the private local
models, while transformations of it, created by some privati-
zation mechanism (e.g. differential privacy), can be used to
train the federated model.

Formally, each client dataset D* is split into two non-
overlapping datasets, Dé‘é and DX, one of which has to be
non-empty. The local model f}* and the gating model h*
is trained using the whole dataset D* = DE, U D%, while
the global model f, is trained with FEDAVG using only the
non-sensitive opt-in dataset D%. In Figure 1 this is visual-
ized by each client either opting-in or out all of its data. In
our experiments, we assume that a client that opts out does
so with its whole dataset, meaning that it puts all of its data
in D§,.

3.2. Optimization problem

Step 1: Train a global model. We train the global model
using FEDAVG. In other words, globally we optimize
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for the opt-in dataset D%. Here ¢} is the loss for the global
model w, on client k for the prediction f,(z) = ¢,, and
D% is the kth clients opt-in data distribution.

Step 2: Train local specialists. The output model from
FEDAVG is fine-tuned on each clients datasets, minimizing
the local loss. We initialize the specialist model with the
global parameters w, and optimize:

Vk=1,...,n.
4)

Here, /}, is the loss for the prediction §; = f¥(w”; z) from
the fine-tuned model on the input z and D* is the kth clients
dataset.
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Step 3: Train local mixtures. The local mixture of experts
are trained using the gating models h*, with the prediction
error given by weighing the trained models f, and f%:

Jp = hk(x)ff(ac) + (1 — hk(x)) folx) VE=1,...,n.
(6)

In other words, at the end of a communication round, given
[k and f,, we optimize the mixture (6):
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locally for every client £ = 1,...,n. Here, ¢y is the loss
from predicting ¢ for the label y given the input = with the
model from (6) over the data distribution D* of client k. We
freeze the weights of w,, and only update w¥ and wf. A
summary of the method is described in Algorithm 1.

Algorithm 1

1: input: Models participating in FEDAVG wy, . . .
local gate w;kl', learning rate 7, decay rates 31, 52
2: Initialize wq, . . ., wy with the same random seed.
Initialize wl,j.
4: wy < FEDAVG(wy,...,wy) / Train for E local
epochs and G communication rounds
5: for client k do
6: Initialize specialist model w* «+ w,.
7. w¥ « Adam(w¥,lr,B1,82) // Fine-tune w, on
each client k
8:  Freeze global parameters wy.
9:  wk wk « Adam(w,, w®, wk ir, B1, B2) / Train
mixture of experts on client k
10: end for
11: output: Trained mixture of experts: global model wy,

local experts w* and local gating functions wy.

y Wk,

w

4. Experimental setup

We use two different ways of sampling client data to simu-
late heterogeneous distributions. The first setup is a more
generalized version of the pathological non-iid setup as
described in (McMahan et al., 2017) where each client is
only assigned 2 classes. The second sampling strategy is
performed using the Dirichlet distribution as described in
(Yurochkin et al., 2019; Hsu et al., 2019).

Datasets and models. Our experiments are carried out us-
ing two model architectures on three datasets. The dataset
used are CIFAR-10 (Krizhevsky et al., 2009), Fashion-
MNIST (Xiao et al., 2017), and AG News (Gulli, 2004).

The CIFAR-10 dataset consists of 60 000 32x32 color im-
ages in 10 classes, with 6000 images per class. The dataset
is split into 50 000 training images and 10 000 test images.

The Fashion-MNIST dataset contains 70 000 28x28 gray-
scale images of Zalando clothing in 10 classes. It is split
into 60 000 training images and 10 000 test images.

The AG News topic classification dataset consists of 4
classes, each of which contains 30 000 training samples
and 1 900 testing samples. In total there are 120 000 train-
ing samples and 7 600 testing samples.
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For CIFAR-10 and Fashion-MNIST, the specialist model
fs and the global model f, are CNNs with the same ar-
chitecture. The CNN has two convolutional layers, each
with a kernel size of 5 (the first with 6 channels, the second
with 16), and two fully-connected layers with 120 and 84
units, respectively, with ReLU activations. This is followed
by an output layer with a softmax activation. The gating
function hy, has the same architecture as f, and f,, but with
a sigmoid activation in the output layer instead of a softmax.

For AG News, both the local and the global models consist
of an embedding layer with a dimension size of 100, a bi-
directional LSTM layer with 64 nodes followed by an output
layer with a softmax activation. The gating function has the
same architecture in this case as well, but with a sigmoid
activation in the output layer. We use the Adam optimizer
(Kingma & Ba, 2014) to train all models.

Pathological non-iid sampling. The first way we create a
skewed non-iid dataset for each client is by constructing a
subset for each client with oversampling of specific classes.
Sampling is performed such that the dataset of each client
contains two majority classes which together form a fraction
p of the client data and the remaining classes form a fraction
(1 — p) of the client data. We perform experiments with
p = {0.2,0.3,...,1.0} to see what effect the degree of
heterogeneity has on performance. In the extreme case p =
1.0, each client dataset only contains two classes in total,
which is the same pathological non-iid setup as used for the
MNIST dataset in (McMahan et al., 2017). A majority class
fraction of p = 0.2 represents an iid setting for CIFAR-10
and Fashion-MNIST. For the AG News dataset which only
has four classes, a fraction of p = 0.5 represents an iid
setting.

Dirichlet distribution non-iid. The second sampling strat-
egy is to use the Dirichlet distribution as described in
(Yurochkin et al., 2019; Hsu et al., 2019). For each class
we sample n; ~ Dir;(«) and assign each client j a pro-
portion of ny, ; for class k. When o — oo we have an iid
setting of equal number of instances per class for each client.
When o« — 0, we have a completely non-iid setting where
each client dataset only has one class in total. We form
experiments with « = {0.05,0.1,0.5, 1.0, 10, 100}.

Opt-out factor and privacy. Some users might want to
opt out from participating to a global model, due to privacy
reasons. These users will still receive the global model. To
simulate this scenario in the experimental evaluation, we
introduce an opt-out factor denoted by ¢. This is a fraction
deciding the number of clients participating in the FEDAVG
optimization. The clients that participate in the federated
learning optimization have all their data in D%, while the
clients that opt out have all their data in D@. q = 0 means all
clients are participating. We perform experiments varying
q, to see how robust our algorithm is to different levels of

client participation. In Figure 1 we visualize how the opt-out
factor can be used.

FEDAVG parameters. For CIFAR-10 and Fashion-MNIST,
the training is performed using 100 clients with 100 training
samples per client. A client sampling fraction of 0.05 is
used, meaning that 5 clients participate in each communi-
cation round. If the opt-out fraction g is larger than 0, we
change the sampling fraction such that there always are 5
clients that participate in every communication round.

For AG News, we set the number of clients to 1000, with
100 training samples per client. We use a client sampling
fraction of 0.05, meaning that 50 clients participate in each
communication round. If the opt-out fraction ¢ is larger than
0, we change the sampling fraction such that there always
are 50 clients that participate in every communication round.

For all datasets we set the number of communication rounds
to 1250, number of local epochs to 3 and local batch size to
10. We use early stopping and validate the performance of
FEDAVG on each participating client’s local validation set
every 50th communication round. The global model with
the best mean validation loss over participating clients is
returned.

Baselines. We use three different models as baselines. First,
a locally trained model for every client, only trained on
each clients own dataset. Second, FEDAVG. Third, the final
model output from FEDAVG fine-tuned for each client on its
own local data, denoted by fslC ‘We train the local model, the
fine-tuned model and the mixture using early stopping for
500 epochs, monitoring local validation loss on each client
and return the best performing model in each case.

Evaluation. We evaluate using both a local (skewed) and
a global (balanced) test set. Each client has a local test set
(n = 500 samples) that mirrors its local data distribution.
This test set is used to measure how well a model specializes
to a client. The global test set (n = 1000 samples) is a
balanced test set (it contains the same number of data points
for all classes) and is the same for all clients. We use this to
measure how well a model generalizes. During evaluation,
we sample 20 random clients and calculate the local and
global test accuracies for all baselines and report a mean
over the clients. All experiments were performed on a Tesla
V100-SXM2-32GB, and all reported results are means over
four runs.

5. Results and discussion

For the sake of reproducibility, all code is made available. !
Figure 2 shows a learning rate sweep for FEDAVG on all

'Link to github repo will be made
available here.
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Table 1. Accuracy on a global and local test set for all baselines on all datasets with varying majority class fractions p. Best performing
specialist in bold. Opt-out fraction ¢ = 0. All results reported are over four runs.

(a) CIFAR-10: Global test set

(b) CIFAR-10: Local test set

p  FedAvg Local Fine-tuned Mixture p  FedAvg Local Fine-tuned Mixture
03 4265 19.17 39.78 41.57 0.3 4332 23.39 42.98 43.86
0.6 3047 1474 25.87 26.37 0.6 30.13 42.19 50.97 50.57
0.7 2290 14.62 20.66 21.45 0.7 21.81 50.23 54.98 54.73
0.8 20.00 13.98 18.85 19.55 0.8 16.78 59.89 64.54 64.47
1.0 1508 14.18 14.55 14.66 1.0 13.62 77.00 78.32 78.56

(c) Fashion-MNIST: Global test set

(d) Fashion-MNIST: Local test set

p  FedAvg Local Fine-tuned Mixture P FedAvg Local Fine-tuned Mixture
0.3 71.12  40.65 69.32 70.50 0.3 70.66  45.77 69.76 70.42
0.6 66.85 18.07 61.43 64.82 0.6 65.14 55.16 71.01 71.18
0.7 6445 17.57 58.95 62.15 0.7 64.67 65.12 74.86 74.63
0.8 6745 17.69 58.66 61.53 0.8 66.45 74.84 76.02 76.70
1.0 4943 18.11 23.69 22.64 1.0 48.01 94.22 91.28 92.10

(e) AG News: Global test set (f) AG News: Local test set
p  FedAvg Local Fine-tuned Mixture p  FedAvg Local Fine-tuned Mixture

0.5 80.31  28.82 75.51 78.03 0.5 81.93 3422 78.48 80.53
0.7 10.42 3.88 9.79 10.15 0.7 79.23  48.92 80.37 81.98
0.8 10.39 3.82 9.59 10.01 0.8 7545 56.21 81.49 82.66
0.9 9.73 391 8.90 9.43 0.9 6847 63.71 83.44 82.96

1.0 8.62 3.95 6.43 7.29 1.0 5486 72.34 87.26 86.51

three datasets using different majority class fractions p. The
sweep was carried out over learning rates n = {1077, 5 -
1077,...,1073,5-10~3}. The accuracy was calculated on
a balanced validation set. The learning rate of 7 = 5 - 107
yielded the best validation accuracy for both CIFAR-10
and Fashion-MNIST, and given these results, we use this
learning rate for training FEDAVG in all experiments for
these two datasets. For the AG News dataset best overall
performing learning rate was found tobe n = 5 - 10~

The same learning rates of 7 = 5 - 10~° (CIFAR-10 and
Fashion-MNIST) and = 5 - 10~ (AG News) was set to
train the local baseline models. For the fine-tuned baseline
model and the mixture of experts, a lower learning rate was
used of 7 = 1075 for CIFAR-10 and Fashion-MNIST and
n = 1075 for AG News. In the appendix we show train-
ing and validation losses for FEDAVG over communication
rounds.

In Table 1 we see results for the three datasets for varying
majority class fractions p. The leftmost Tables 1a, 1c and
le show the results for a global (balanced) dataset, which
is the same for all clients. The rightmost tables 1b, 1d
and 1f show the results on a local (unbalanced) dataset

mirroring each clients distribution. In bold we present the
best performing specialist. We note here that our proposed
mixture of experts is overall the best specialist model in
terms of generalization, whereas it performs roughly equally
as good as the fine-tuned specialist on a local test set.

This is further visualized for all datasets in Figure 3. Here
the global test accuracy is shown on the x-axis and the lo-
cal test accuracy is shown on the y-axis for the different
baselines. We note that the mixture of expert consistently
outperforms the fine-tuned specialist on all three datasets,
performing roughly equal on a local test set while consis-
tently outperforming it on the global test set.

In Figure 4 global test accuracies for the fine-tuned baseline
and the mixture of experts on all datasets are shown, as a
fraction of FEDAVG test accuracy. Here we see that that our
proposed method consistently outperforms the fine-tuned
baseline in terms of generalization, being the closest to
FEDAVG performance in all settings. In Figure 5 similar
results for different Dirichlet v values are presented, instead
of majority class fractions p.
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Figure 2. Learning rate vs balanced validation accuracy for FEDAVG on (a) CIFAR-10, (b) Fashion-MNIST and (c) AG News using
different majority class fractions p. Reported values are means over four runs.
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Figure 3. Accuracy on balanced test data (z-axis) vs unbalanced local test data (y-axis) for the three datasets with opt-out fraction ¢ = 0.
Different majority class fractions p are shown as colored numbers. Reported values are means over four runs.

Opt-out fractions. Experiments were carried out to test
what effect client opt-out has on performance. The re-
sults can be seen in Figure 6 for CIFAR-10 over varying
majority class fractions p with large opt-out fractions of
g = {0.9,0.95}, meaning that 90% and 95% of clients,
respectively, choose not to participate in the federated learn-
ing, but still obtains the global model at the end of training.
Similar to the results with no opt-out (¢ = 0), our proposed
model outperforms the fine-tuned baseline on the global test
set, while performing on par on the local test sets. In Figure
6b, we see that in the iid case of p = 0.2 that the mixture not
only outperforms the fine-tuned model, but also FEDAVG in
both generalization and specialization. This shows that the
mixture in this setting is more robust to many clients opting
out from federated learning.
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Figure 6. Test accuracy on a global test set (x-axis) and local test
set (y-axis) for the CIFAR-10 dataset, with two different opt-out
fractions g. Majority class fractions are shown in colored numbers.
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6. Conclusions

To address the problems of learning a personalized model
in a federated setting when the client data is heterogeneous,
we have proposed a novel framework for federated mixtures
of experts where a global model is combined with a local
specialist model. We find that by combining the two expert
models we achieve high performance on local client datasets,
with minimal loss on generalization as compared to a fine-
tuned baseline on two image classification datasets and one
text classification dataset in highly non-iid settings, and
achieve test accuracies on par with FEDAVG in iid settings.

Our approach is not only an intuitive approach for the gener-
alist vs specialist balance, but also allows for varying level
of participation of the different clients in the federation. As
such, the framework gives strong privacy guarantees, where
clients who do not want to disclose their data are able to opt
out and keep their data completely private. The experiments
show that our proposed solution is robust to a high opt-out
fraction of users, as seen in Figure 3. It thus constitutes a

flexible solution for strong privacy guarantees in real-world
settings where users might not want to disclose their model
to a central server.

The proposed framework is compatible with any gradient-
based machine learning model, and can incorporate combi-
nations of these, strengthening the potential of this direction
of research, and leveraging the beneficial properties of en-
sembles of various machine learning models.

In this work we limited our experiments to non-identical
distributions in the form of prior probability shift. We hy-
pothesize that our proposed method can handle other distri-
butional shifts, such as covariate or concept shifts as well,
and see this as an interesting direction for future work.
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