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Abstract—We propose an adaptive change point detection
method (A-CPD) for machine guided weak label annotation of
audio recording segments. The goal is to maximize the amount of
information gained about the temporal activations of the target
sounds. For each unlabeled audio recording, we use a prediction
model to derive a probability curve used to guide annotation. The
prediction model is initially pre-trained on available annotated
sound event data with classes that are disjoint from the classes
in the unlabeled dataset. The prediction model then gradually
adapts to the annotations provided by the annotator in an active
learning loop. We derive query segments to guide the weak label
annotator towards strong labels, using change point detection on
these probabilities. We show that it is possible to derive strong
labels of high quality with a limited annotation budget, and show
favorable results for A-CPD when compared to two baseline
query segment strategies.

Index Terms—Active learning, annotation, sound event detec-
tion, deep learning

I. INTRODUCTION

Most audio datasets today consists of weakly labeled data
with imprecise timing information [1], and there is a need for
efficient and reliable annotation processes to acquire labels
with precise timing information. We refer to such labels
as strong labels. The performance of sound event detection
(SED) models improve with strong labels [2], and strong
labels become especially important when we want to count
the number of occurrences of an event class. For example in
bioacoustics, where counting the number of vocalizations of
an animal species can be used to estimate population density
and draw ecological insights [3].

Crowdsourcing the strong labels is challenging and an
attractive solution is to crowdsource weak labels to enable re-
construction of the strong labels [4], [5]. Asking the annotator
for strong labels requires more work and it can in the worst
case lead to the annotator misunderstanding the task [5].

Disagreement-based active learning is the most used form
of active learning for sound event detection [6]–[9], focusing
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Fig. 1. Illustration of segmentation of an audio spectrogram with three
target events shown in shaded green (top panel) into a set of audio query
segments q0, . . . , q6 using an optimal method w.r.t the derived strong label
timings (middle panel) and a sub-optimal method (bottom panel). Resulting
annotations, from the weak labels given by the annotator, are shown in shaded
red for both methods. Query q4 for the optimal method is omitted for clarity.

on selecting what audio segment to label next. The recordings
are either split into equal length audio segments [6], [7], [9]
or segments depending on the structure of the sound [8]. Each
segment is then given a weak label by the annotator.

We use a weak label annotator to derive strong labels as
in [5], but instead of using fixed length query segments we
adapt the query segments to the data, in the setting of active
learning. We propose an adaptive change point detection (A-
CPD) method which splits a given audio recording into a set of
audio segments, or queries. The queries are then labeled by the
annotator and the strong labels are derived and evaluated. See
Fig. 1 for an illustration where a set of seven queries are used
either optimally or sub-optimally for a given audio recording
with three sound events. We assume three sound events to be
detected in each audio recording as a simplification during
method development. We aim to adapt the set of queries in
such a way that the information about the temporal activations
of the target sounds is maximized. Note that we aim to
actively guide the annotator during the annotation of the audio
recordings, rather than actively choose which audio recordings
to annotate which is typically done in active learning.



II. SOUND EVENT ANNOTATION USING ACTIVE LEARNING

We consider SED tasks where the goal is to predict the
presence of a given target event class. The results can also
be generalized into the multi-class setting. Given a restricted
annotation budget and no initial labels we aim to derive strong
labels using active learning to train a SED system. To this end,
we propose the following machine guided annotation process.

Let D(k)
L denote the set of labeled audio recordings and

D(k)
U the set of unlabeled audio recordings at active learning

iteration k. Further, let A(k) = {(s(j)i , e
(j)
i , c

(j)
i )}Bi=1

k
j=1 de-

note the annotations of segments, where s denotes the onset,
e the offset, and c ∈ {0, 1}, the weak label for each segment
i of the B annotated segments in audio recording j.

We start without any labels, A(0) = D(0)
L = Ø, and all

audio recordings are unlabeled, D(0)
U = {xj}Nj=1, where xj ∈

RT denotes an audio recording of length T , and N denotes
the total number of audio recordings. We then loop for each
k ∈ {1, . . . , N} and:

1) choose a random unlabeled audio recording x from
D(k−1)

U ,
2) derive a set of B audio query segments Q = {qi}B−1

i=0

using a query strategy where qi = (si, ei) consists of
the start si and end ei timings for query i,

3) send the queries to the annotator (returning a weak label
for each query) and add the annotations to the set of
segment labels A(k) = A(k−1) ∪ {(si, ei, ci)}Bi=1,

4) In case of A-CPD: use the annotations {(si, ei, ci)}Bi=1

to update the query strategy, and
5) update the labeled recording set D(k)

L by adding x and
the unlabeled recording set D(k)

U by removing x.
For brevity we have omitted the dependence on k for xrk and
(s

(rk)
i , e

(rk)
i , c

(rk)
i ) in the description of the annotation loop,

where rk ∈ {1, . . . , N} would denote the randomly sampled
audio recording for iteration k. After the annotation loop all
N audio recordings have been annotated exactly once with the
query method used in step (2), resulting in a set of annotations
A(N) = {(s(j)i , e

(j)
i , c

(j)
i )}Bi=1

N
j=1.

Note that B is not the number of sound events in the
recording, but the number of query segments allowed when
annotating the recording. The smallest number of query seg-
ments to derive the ground truth strong labels does, however,
depend on the number of sound events M in the recording as
2M + 1 (see Section III-D). A-CPD is developed to provide
strong labels using as few as B = 2M + 1 queries.

The total annotation budget used will scale with both N
and B. Typically we would aim to reduce N by actively
sampling the data points to annotate, but we instead aim to
reduce B. Think of B as a part of the annotation cost of
an audio recording, which can be reduced with maintained
label strength by guiding the annotator during the annotation
process.

III. QUERY STRATEGIES

In this section we describe the studied query strategies.

Fig. 2. Qualitative example of how the different query strategies A-CPD, F-
CPD and FIX segment a spectrogram of an audio recording with three target
events shown in shaded green (top panel) into B = 7 queries. A-CPD (second
panel) uses change point detection (blue line) on the probability curve from
a prediction model (orange line) to detect the B − 1 most prominent peaks
(red crosses) which are used to construct a set of queries {q0, . . . , qB−1}
(dashed red lines). Each query qi = (si, ei) is given a weak label ci ∈ {0, 1}
(c = 1 shown as shaded red), resulting in the i:th annotation (si, ei, ci). F-
CPD (third panel) uses change point detection directly on the cosine distances
in embedding space (blue line) and thereafter constructs queries in the same
way as A-CPD. FIX (fourth panel) uses fixed length queries.

A. The adaptive change point detection strategy (A-CPD)

To produce a set of queries for a given audio recording x
at annotation round k we perform three key steps:

1) update a prediction model using the annotations from
round k − 1 (initialized with pre-training if k = 0),

2) predict probabilities indicating the presence of the target
class in the recording using the model, and

3) apply change point detection to the probabilities to
derive the queries.

The pre-training of the prediction model can be done in a
supervised or unsupervised way. The important property is that
the model reacts to changes in the audio recording related to
the presence or absence of the target class. However, it is not
strictly necessary that the model reacts only to those changes.

Let hk : RL → [0, 1] denote a model that predicts the
probability of an audio segment of length L belonging to the
target event class. In principle, any prediction model can be
used. For a given audio recording x the prediction model
hk(·) is applied to consecutive audio segments to derive a
probability curve, shown as the orange curve for A-CPD in
Fig. 2. The consecutive audio segments are derived using a
moving window of L seconds with hop size L/4.

We define the Euclidean distance between two points t−α
and t+ α on the probability curve as:

g
(k)
A-CPD(t) = ||hk(t− α)− hk(t+ α)||, (1)

shown as the blue curve for A-CPD in Fig. 2. The previous
probability is compared with the next probability in Eq. 1,
and α = L/4 (hop size) is therefore chosen to ensure a 50%
overlap between the audio segments for these probabilities.



Let t be a local optimum of g
(k)
A-CPD(t), and all such local

optima are called peaks. We rank peaks based on prominence.
For any given peak t, let tl and tr denote the closest local
minima of gk(·) to the left and right of t. The prominence
of the peak at t is defined as |gk(t) − max(gk(tl), gk(tr))|.
Let TA-CPD = {t1, t2, . . . , tB−1} be the B− 1 most prominent
peaks of a given audio recording such that t1 ≤ t2 ≤ · · · ≤
tB−1, shown as red crosses in Fig. 2. The A-CPD query
method is then defined as:

Q
(k)
A-CPD = {(0, t1), (t1, t2), . . . , (tB−1, T )}, (2)

which are shown as dashed red lines in Fig. 2, where T is the
length of the audio recording and B is the number of queries
used. Note that g(k)A-CPD(t) will gradually become more sensitive
towards changes between presence and absence of the target
class in the recording with additional annotations, and become
less sensitive to other unrelated changes.

B. The fixed change point detection strategy (F-CPD)
The fixed change point detection (F-CPD) method used as a

reference derives the queries by computing the cosine distance
between the previous embedding at time t − α and the next
embedding at time t+ α:

gF-CPD(t) = 1− et−α · et+α

||et−α||||et+α||
, (3)

where et = fθ(xt) denotes the embedding of consecutive
audio segments xt centered at second t using the embedding
function fθ : RL → RK . The cosine distance curve for an
audio recording is shown as the blue line for F-CPD in Fig. 2.
This method is similar to [8] except that embeddings are
derived for 1.0 seconds of audio instead of 0.02. We therefore
directly compare the previous and next embeddings instead of
a moving average as in [8].

The most prominent peaks in the cosine distance curve is
then selected, TFIX = {t1, t2, . . . , tB−1}, and the set of queries
are defined as in Eq. 2, shown as dashed red lines for F-CPD
in Fig 2.

C. The fixed length strategy (FIX)
In the fixed length query strategy (FIX) audio is split into

equal length segments and then labeled. Let d = T/B, then
the queries are defined as

QFIX = {(0d, 1d), (1d, 2d), . . . , ((B − 1)d,Bd)}, (4)

shown as dashed red lines for FIX in Fig 2. This is the setting
most previous active learning work for SED consider.

D. The oracle strategy (ORC)
The oracle query strategy constructs the queries based on

the ground truth presence and absence annotations

QORC = {(s0, e0), (s1, e1), . . . , (sBsuff−1, eBsuff−1)}, (5)

where (si, ei) is the onset and offset for segment i where
the target event is either present or not. Bsuff is the sufficient
number of queries to get the true strong labels, which relate
to the number of target events M in the given audio recording
by Bsuff = 2M + 1. ORC is undefined for B < Bsuff.

E. The role of query strategies in the annotation process

The query strategies described in this section are then used
in step (2) of the annotation loop described in Section II. Note
that when the queries are not adapted to the audio recording
multiple events can end up being counted as one. In Fig. 2 we
can see this for F-CPD where q3 and q4 are directly adjacent,
meaning that they are not resolved as two separate events, and
for FIX where q3, q4 and q5 are all directly adjacent. A-CPD
often resolves all three events. Fig 2 is a qualitative example
of all three methods, and quantitative results to further support
this claim are provided later in table I.

The FIX length query segments depend on the query timings
and target event timings aligning by chance since the query
construction is independent of the target events. The A-CPD
method aim to create query segments that are aligned with
the target events by construction. In addition, the number
of queries needed to derive the strong labels scale with the
number of target events in the recording for A-CPD, which
can be beneficial.

IV. EVALUATION

A. Datasets

We create three SED datasets for evaluation, each with
a different target event class: Meerkat, Dog or Baby cry.
The Meerkat sounds are from the DCASE 2023 few-shot
bioacoustic SED dataset [10] and the Dog and Baby cry sounds
from the NIGENS dataset [11]. The sounds used for absence
of an event are from the 15 background types in the TUT Rare
sound events dataset [12].

The audio recordings in each dataset are created by ran-
domly selecting M = 3 sound events from that event class and
mixing them together with a randomly selected background
recording of length T = 30 seconds. In this way we know
that exactly Bsuff = 2M + 1 = 7 queries are sufficient and
necessary to derive the ground truth strong labels using a weak
label annotator. The mixing is done using Scaper [13] at an
SNR of 0 dB. In total we generate N = 300 audio recordings
using this procedure for each event class as training data and
equally many as test data.

The source files used in the mixing uses the supplied splits
in [11] and [12], except for the Meerkat sounds where non
exist and the split is done on a recording level.

B. Evaluation metrics

We evaluate the methods by annotating the mixed training
datasets using the query strategies described in Section II and
the annotation loop described in Section III. The quality of the
annotations are then measured in two ways: (i) how strong the
annotations are compared to the ground truth, and (ii) the test
time performance of two evaluation models trained using the
different annotations.

The evaluation metrics used in case (i) and (ii) are event-
based F1-score (F1e) and segment-based F1-score (F1s) [14].
The segment size for F1s is set to 0.05 seconds, and the collar
for F1e is set to 0.5 seconds. In case (i) the F1s measures
how much of the audio that has been correctly labeled and in



TABLE I
AVERAGE F1s-SCORE AND F1e-SCORE FOR THE TRAINING ANNOTATIONS
FOR EACH ANNOTATION PROCESS AND TARGET EVENT CLASS WITH β = 0

Strategy Meerkat Dog Baby
F1s F1e F1s F1e F1s F1e

ORC 1.00 1.00 1.00 1.00 1.00 1.00
A-CPD 0.31 0.57 0.29 0.45 0.62 0.60
F-CPD 0.16 0.44 0.21 0.30 0.48 0.45

FIX 0.11 0.00 0.19 0.00 0.41 0.01

case (ii) F1s measures how much of the audio that has been
correctly predicted by the evaluation model. The F1e score
is only used to measure how close the annotations are to the
ground truth labels in the training data.

a) Annotator model: Let A(j)
gt = {(si, ei, c = 1)}3i=1

denote the set of ground truth target event labels for audio
recording j, where si is the onset, ei the offset and c = 1
indicate the presence of the target event.

We use A(j)
gt to simulate an annotator for recording j. For

a given query segment we check the overlap ratio with the
ground truth target event labels. Formally, if there exists an
annotation (si, ei, ci = 1) s.t.

(si, ei) ∩ (sq, eq)

|si − ei|
≥ γ, (6)

holds for the given query segment q = (sq, eq), then the
annotator returns ci = 1 for query q, and ci = 0 otherwise.
Annotation noise is added by flipping the returned label with
probability β. In this work γ = 0.5, and β ∈ {0.0, 0.2}.

C. Implementation details and experiment setup

a) Prediction model: The prediction model hk(·) is
modeled using a prototypical neural network (ProtoNet) [15].
The prototypes are easily updated at each annotation round k
using a running average between each previous prototype and
the newly labeled audio embeddings. We model the embedding
function fθ(·) using BirdNET [16], a convolutional neural
network pre-trained on large amounts of bird sounds.

b) Evaluation models: We use two models to evaluate
the test time performance of models trained on the annotations
obtained using each query strategy: a two layer multilayer per-
ceptron (MLP) and a ProtoNet. The MLP is trained using the
Adam optimizer and cross-entropy loss. Each query strategy
is run 10 times and the evaluation models are trained on the
embeddings using the resulting labeled datasets. ProtoNet is
used in two ways: as a prediction model in the proposed A-
CPD method, and as an evaluation model.

D. Results

In Table I we show the average F1s-score and F1e-score
for the training data annotations over 10 runs for each dataset
and with the sufficient nu B = Bsuff = 7. The A-CPD
method outperforms the other methods for all studied target
event classes. The standard deviation is in all cases less than
0.03 (omitted from table for brevity), and the baseline query
strategies are deterministic when β = 0.
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Fig. 3. The average F1s-score over the three classes for each of the
studied annotation processes plotted against the number of queries per audio
recording, B. The results are shown for an annotator without noise (left) and
with β = 0.2 (right). Note that ORC is 1.0 when β = 0 and is therefore not
shown in the left figure. Shaded region where B ≥ Bsuff.
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Fig. 4. The average test time F1s-score over the studied sound classes for a
ProtoNet (top) and the MLP (bottom) trained with the annotations from each
respective annotation process and setting. Shaded region where B ≥ Bsuff.

In Fig. 3 we show the average F1s-score over all runs and
event classes for the annotations derived from each query
strategy. The proposed A-CPD method has a strictly higher
F1s-score than the FIX and F-CPD baselines for all budgets
and noise settings. We also see that there is still a significant
gap to the ORC strategy. The noisy annotator (β = 0.2)
drastically reduce the label quality for all studied strategies,
especially ORC dropping from an F1s-score of 1.0 (omitted
from figure) to ≈ 0.28 (large drop due to class-imbalance).

In Fig. 4 we show the average test time F1s-score of



TABLE II
AVERAGE TEST TIME F1s-SCORE FOR PROTONET WITH β = 0.

Strategy Meerkat Dog Baby
ORC 0.46 0.48 0.81

A-CPD 0.44± 0.00 0.20± 0.01 0.71± 0.02
F-CPD 0.31 0.19 0.66

FIX 0.34 0.25 0.68

TABLE III
AVERAGE TEST TIME F1s-SCORE FOR MLP WITH β = 0.

Strategy Meerkat Dog Baby
ORC 0.43± 0.00 0.51± 0.01 0.83± 0.00

A-CPD 0.44± 0.00 0.43± 0.02 0.81± 0.01
F-CPD 0.38± 0.01 0.42± 0.02 0.79± 0.01

FIX 0.33± 0.02 0.40± 0.02 0.75± 0.02

a ProtoNet (top) and a MLP (bottom) trained using the
annotations from each of the studied annotation strategies and
settings. The A-CPD method outperforms the other methods
when B ≥ 7. For the ProtoNet the FIX method outperform
A-CPD when B < 7 and for the MLP the results are similar.

Table II and III show the average F1s-score and standard
deviation for the three different event classes for all studied
query strategies. The average is over 10 runs, and the number
of queries is set to B = 7. Table II shows the F1s-score for
the ProtoNet evaluation model. A-CPD achieves a higher F1s-
score for the meerkat and baby datasets. On average A-CPD
outperforms the other methods as seen in Fig. 4. Table III
shows the F1s-score for the MLP evaluation model. A-CPD
achieves a higher F1s-score for all studied datasets.

E. Discussion

The results in all tables are for the sufficient budget B =
Bsuff = 2M + 1. In practice we do not know Bsuff. However,
the A-CPD method is applicable also for an arbitrary number
of sound events in the recording when B is chosen sufficiently
large. This choice need to be made for all the studied methods.
We show the benefit of A-CPD for differently chosen B in
Fig. 3. Estimating Bsuff based on the audio recording could
further reduce the number of queries used and is left as future
work.

We chose γ = 0.5 in the annotator model since the
annotator should be able to detect a target event if more
than 50% of the event occurs within the query segment. This
choice is however non-trivial, and depends on the expertise
of the annotator and target class among others. We observe
similar results on average as those presented in the paper for
γ ∈ {0.05, 0.25, 0.5, 0.75, 0.95} (not shown).

We use BirdNET [16] to model the embedding function
since we study bioacoustic target classes. However, an em-
bedding function such as PANNs [17] may also be used if the
target classes are more general.

V. CONCLUSIONS

We have presented a query strategy based on adaptive
change point detection (A-CPD) which derive strong labels of
high quality from a weak label annotator in an active learning

setting. We show that A-CPD gives strictly stronger labels
than all other studied baseline query strategies for all studied
budget constraints and annotator noise settings. We also show
that models trained using annotations from A-CPD tend to
outperform models trained with the weaker labels from the
baselines at test time. We note that the gap to the oracle method
is still large, leaving room for improvements in future work.
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