
Efficient and precise annotation of local structures in data





Efficient and precise annotation
of local structures in data

by John Martinsson

Licentiate Thesis
Thesis advisors: Maria Sandsten, Olof Mogren

Faculty opponent: Annamaria Mesaros

To be presented, with the permission of the LTH of Lund University, for public criticism in the room
MH:309A at the Centre for Mathematical Sciences, Mathematical Statistics on Thursday, the 3rd of October

2024 at 10:15.



D
O
K
U
M
EN

TD
A
TA

BL
A
D
en

lS
IS
61

41
21

Organization

LUND UNIVERSITY

Centre for Mathematical Sciences, Mathematical
Statistics
Box 118
SE–221 00 LUND, Sweden

Author(s)

John Martinsson

Document name

Licentiate thesis
Date of presentation

2024-10-03
Sponsoring organization The Swedish Foundation for
Strategic Research (SSF; FID20-0028), and Sweden’s
Innovation Agency (2023-01486)

Title and subtitle

Efficient and precise annotation of local structures in data:

Abstract

Machine learning models are used to help scientists analyze large amounts of data across all fields of science. These
models become better with more data and larger models mainly through supervised learning. Both supervised
learning and model validation benefit from annotated datasets where the annotations are of high quality. A key
challenge is to annotate the amount of data that is needed to train large machine learning models. This is because
annotation is a costly process and the collected labels can vary in quality. Methods that enable cheap annotation
of high quality are therefore needed.

In this thesis we consider ways to reduce the annotation cost and improve the label quality when annotating
local structures in data. An example of a local structure is a sound event in an audio recording, or a visual object
in an image. By automatically detecting the boundaries of these structures we allow the annotator to focus on the
task of assigning a textual description to the local structure within those boundaries. In this setting we analyze
the limits of a commonly used annotation method and compare that to an oracle method, which acts as an upper
bound on what can be achieved. Further, we propose new ways to perform this kind of annotation that results in
higher label quality for the studied datasets at a reduced cost. Finally, we study ways to reduce annotation cost by
making the most use of each annotation that is given through better modelling approaches in general.

Key words

Annotation efficiency, Machine learning, Sound event detection

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title

1404-028X
ISBN

978-91-8104-199-6 (print)
978-91-8104-200-9 (pdf )

Recipient’s notes Number of pages

120
Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature Date 2024-09-12



Efficient and precise annotation
of local structures in data

by John Martinsson

Licentiate Thesis
Thesis advisors: Maria Sandsten, Olof Mogren

Faculty opponent: Annamaria Mesaros

To be presented, with the permission of the LTH of Lund University, for public criticism in the room
MH:309A at the Centre for Mathematical Sciences, Mathematical Statistics on Thursday, the 3rd of October

2024 at 10:15.



.

Funding information: The Swedish Foundation for Strategic Research (SSF; FID20-0028), and
Sweden’s Innovation Agency (2023-01486)

Mathematical Statistics
Centre for Mathematical Sciences
Lund University
Box 118
SE-221 00 Lund
Sweden

www.maths.lth.se

Licentiate Thesis in Mathematical Sciences 2024:3
ISSN: 1404-028X

ISBN: 978-91-8104-199-6 (print)
ISBN: 978-91-8104-200-9 (pdf )
LuTfMS-2020-2024

© John Martinsson, 2024

Printed in Sweden by Media-Tryck, Lund University, Lund 2024



Till Lara





Abstract

Machine learning models are used to help scientists analyze large amounts of data across
all fields of science. These models become better with more data and larger models mainly
through supervised learning. Both supervised learning and model validation benefit from
annotated datasets where the annotations are of high quality. A key challenge is to annotate
the amount of data that is needed to train large machine learning models. This is because
annotation is a costly process and the collected labels can vary in quality. Methods that
enable cheap annotation of high quality are therefore needed.

In this thesis we consider ways to reduce the annotation cost and improve the label qual-
ity when annotating local structures in data. An example of a local structure is a sound
event in an audio recording, or a visual object in an image. By automatically detecting the
boundaries of these structures we allow the annotator to focus on the task of assigning a
textual description to the local structure within those boundaries. In this setting we analyze
the limits of a commonly used annotation method and compare that to an oracle method,
which acts as an upper bound on what can be achieved. Further, we propose new ways to
perform this kind of annotation that results in higher label quality for the studied datasets
at a reduced cost. Finally, we study ways to reduce annotation cost by making the most use
of each annotation that is given through better modelling approaches in general.
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Popular summary

Machine learning is at the core of the recent success of artificial intelligence. A machine
learning model is a form of computer algorithm that learns from data. The most common
and reliable way to get the model to learn is by providing supervision. This is done by
feeding the model with input data, say an audio recording, and then telling the model how
to describe what is in that audio recording. A description of an audio recording given by a
model is called a prediction, and a description given by a human that tells the model what
to predict is called a label.

As an example, we can feed an audio recording of a bird singing into such a model and then
tell it to predict that there is bird singing in the recording by providing an audio recording
with an appropriate label. We can do this many times with audio recordings of different
animal vocalizations such as dogs barking, whales calling, or birds singing. Eventually the
model will learn to predict what is in a given audio recording.

These predictions can then be used to automatically analyze large amounts of recorded au-
dio data to gain new scientific insights and establish policies. As an example, we could
detect the vocalizations of different animal species in an acoustically monitored habitat to
better understand the biodiversity in that habitat, and to establish policies towards main-
taining or improving the biodiversity.

At the core of supervised learning is the human description of the data, the label. If the
label is of low quality, for example by indicating that a bird is singing in a part of the audio
recording where it is not, then the predictions from the trained model will be of low quality.

What we explore in this research are ways to improve supervised training of machine learn-
ing models by helping the human annotator to provide labels of higher quality. The goal
is higher quality predictions at a reduced annotation cost. Resulting in higher quality sci-
entific insights and policies, at a reduced cost.
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Introduction

My interest in using machine learning to detect animal vocalizations in audio recordings
goes back to a hiking trip in the Himalayas in 2016. During the month-long hike in the
mountains my uncle would tell me the names of some different species of birds that were
singing along the trail. I had recently come into contact with neural networks, and started
to develop the idea that this should be possible to do with a computer. This idea never left
me, and when I came home I discovered that there is a whole field with researchers doing
just this called bioacoustics. This became the topic of my master’s thesis, where I classified
bird song in audio recordings using convolutional neural networks. And five years later I
started my doctoral studies on the topic of machine learning for audio analysis, often called
machine listening.

At the core of machine listening is the detection and classification of sound events. Sound
events are distinct sounds that we can identify and recall based on their descriptions. These
events, like ”bird singing” or ”dogs barking”, form the core elements of a sound scene,
helping us to interpret the surrounding environment. First we need to notice the onset and
offset of the sound event (detection), and then we need to describe the type of event that
has occurred (classification). Textual descriptions of these sound events are typically short,
capturing the essence of what we hear. When a human is performing the detection and
classification we call it annotation, and in this thesis we will call the textual description a
class label, and the onset and offset a segment label. Annotated sound events are necessary
to train and evaluate machine listening models that perform sound event detection. The
speed of annotation can vary depending on the annotation task, and the annotations are in-
herently subjective, influenced by the annotator’s personal experiences and perceptions [1].

What I have learned while developing methods and by discussing and collaborating with
ecologists from around the world, is that large scale audio datasets are scarce. Datasets with
annotations of thousands of animal sound events are rarely available when these projects
start. They often have very few, if any, labeled sound events, and a huge need to annotate
months or years of unlabeled audio recordings. What I want to explore in this thesis is
therefore ways to make annotation easier, and how to improve the quality of the labels
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collected during annotation. Further, I explore ways to make the best use the few initial
labels that we may have.

In Paper A, we develop a theory for the label quality and annotation cost of a commonly
used labeling method, where the annotator is limited to assigning class labels to fixed length
audio data segments, called FIX weak labeling.

In Paper B, we propose a weak labeling method where the annotator assigns class labels
to data segments that are adapted to cover the local structures (sound events) of interest.
This can save annotation cost by requiring the annotator to give class labels to fewer data
segments, and can also make the labels more precise by adapting the data segments to the
structures of interest.

In Paper c, we propose a method to learn the time-frequency resolution in the commonly
used log-Mel spectrogram as a part of the neural network training process.

In Paper D, we propose a robust method for bioacoustic sound event detection which can
learn from only five annotated sound events.

While the motivation for this research mainly comes out of the need for cost efficient and
high quality annotations for audio data, a lot of the research may be applicable to other
types of data as well. The theory developed, and the methods proposed can in principle be
applied to any time series data, and could possibly be extended to annotation of data in 2 or
3 dimensions as well (e.g., images or point clouds). I will therefore talk more broadly about
annotation of data with local structures, such as sound events, in this thesis (see chapter 1).

The thesis is divided into three main chapters. First, chapter 1 gives an introduction to
annotation of local structures in data and explains in more detail what we mean by a local
structure. This chapter puts Paper A and Paper B in perspective. Second, chapter 2 gives an
introduction to machine guided annotation of local structures in data, and puts Paper B,
Paper c and Paper D in perspective. Finally, chapter 3 conclude the thesis, and discuss
interesting future research directions.
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Chapter 1

Annotating local structures in data

In this chapter, I will introduce the concept of a local structure in data, why we want to
annotate local structures, and what it means to do so. I will then describe a common
method for annotating local structures without explicitly asking the annotator to describe
the boundaries of the structures. We will compare this method to an oracle method that
uses the knowledge of the true boundaries and quantify the gap between them.

The oracle method can be seen as an upper bound on what may be achievable if we were
to use the properties of the local structure during the annotation process. Finally, I will
discuss some of these properties, and how we may be able to use them to design more
precise annotation methods, which will lead us into the next chapter.

1 What is a local structure?

A local structure is a local part of the data that a group of people have given a textual descrip-
tion to. In figure 1.1 a local structure (green) is illustrated for audio (left) and image data
(right). In the audio example, the local structure is the sound event (green) associated with
the textual description ”bird song”. In the image example, the local structure is the set of
pixels that make up the visual object (green) associated with the textual description ”bird”.
The other parts of the data (gray) illustrate the other things happening in the background.

An important property of a local structure is that it occurs locally. In the audio example
the sound event occurs locally along the time dimension, and in the image example the
visual object occurs locally along the spatial dimensions. For audio, the local occurrence
is typically associated with some form of temporal coherence where dependencies between
previous and future sound samples are strong.
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Figure 1.1: An example of a local structure in audio and image data. The audio data is a recording of a bird singing, and the
image data is a picture of a bird. The local structures are shown in green. In the audio recording it is the sound
event of the bird singing, and in the image data it is the visual object of the bird.

2 Why and how do we annotate local structures?

In supervised learning we train the model to predict the labels given by the annotator, and
during evaluation we choose the model that best predict the labels. The prediction quality
of the model will therefore necessarily depend on the quality of the annotations. We have
seen this in sound event detection, where precise labels for the sound events lead to better
performing models [2].

In extent, the (scientific) insights that can be drawn from the model predictions depend
on the quality of the model. As an example, in ecology a researcher may be interested in
counting the number of animal vocalizations from a certain species in an audio recording.
The number of vocalizations, used together with a model of vocalization frequency, can
then be used to estimate the number of individuals in a recording [3]. The accuracy of this
count will depend on the quality of the annotations.

For evaluation data, a higher label quality means a better specification of what the best
model should do, which is always desirable. E.g., if the goal is a model that produces well
detected onsets and offsets of sound events, then the labels of the evaluation data need to
reflect this. However, when training machine learning models, label noise can act as a form
of regularization during training, meaning that sometimes noisy training labels can actually
result in a model that generalize better to the evaluation data. Despite this, I will argue that
anything that can be achieved with noisy training labels can also be achieved with noise
free training labels by simply adding the noise afterwards. The opposite is not true. From
this perspective, less noisy labels are strictly better also for the training data.

This is why we want to annotate the local structure; a precise local structure annotation
gives a more accurate description of the data that help us develop better machine learning
models.
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Annotation of a local structure require us to describe the boundaries of the local structure,
and to give a textual description of the structure within those boundaries. We therefore
consider two label categories: the segment label (boundaries) and the class label (textual
description). The segment label describes the boundaries of a data segment, and the class
label is the textual description that we attribute to that data segment.

Labeling data with local structures therefore consists of constructing a set of segment labels
and their corresponding class labels. The set of segment labels should partition the data into
disjoint segments that cover all of the data, meaning that every part of the data is associated
with exactly one class label. In figure 1.2 we show two different sets of segment labels leading
to a correctly (top) and incorrectly (bottom) labeled local structure in an audio recording.

In the top image of figure 1.2 we can see that assigning the correct class label to each of the
three segments will result in a correctly labeled local structure in the audio recording. In the
bottom image, however, we can see that it is impossible to assign a correct class label to the
second segment since it covers two different classes of the data, the local structure (green)
and background sounds (gray). Further, we can see that three is the minimum number of
segments needed to correctly label the audio data in this case, since if we have any fewer
we will necessarily have to cover both the green and gray part with one of them. However,
there are many ways, using more segments, that would also result in correct labels.

Figure 1.2: An example of segment labels and class labels of a local structure in audio data. The local structure is shown in
green. The top image shows a way to partition the audio data into correct segment labels. With correct segment
labels we can attribute a class label to each segment without introducing any label errors. In this example the class
label indicates the presence of the local structure. The bottom image shows a way to create incorrect segment
labels, in this case we will necessarily introduce noise into the labels by assigning a class label to each segment.

We will refer to the data point that we want to annotate, e.g., an audio recording in this
example, as x and the label of x as y. The label y = (s, c) consists of a set of segment labels s
and a set of corresponding class labels c. We are interested in understanding and reducing
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the label noise introduced by incorrect segment labels in this thesis, called segment label
noise. A segment label is incorrect if it covers data from multiple classes, because then there
is no correct class label for that segment. Segment label noise has been shown to lead to
decreased performance of sound event tagging models [4, 5], where the goal is to detect if
a sound event occurs in a given audio recording.

Another type of label noise occurs when an annotator assigns the incorrect class label for
a given data segment, we call this class label noise. We do not model class label noise in
Paper A, but we do study the effect of it in Paper B. A common way to reduce class label
noise is to form a consensus on the class label by asking multiple annotators to label the
same data segment [6, 7, 8].

3 Weak labeling of local structures

Annotating local structures is a demanding task that requires the annotator to detail the
boundaries for the segment labels and assign the correct class label to each of these seg-
ments. The segment labels given by annotators are often inconsistent [2], partly because
the interpretation of what constitutes the boundary of a local structure is subjective [9],
leading to segment label noise. In addition, annotation of segment labels is demanding and
takes more time, increasing the cost of annotation, and if the annotator is not an expert
they may misunderstand the annotation task if it is too complex [8]. All these challenges
associated with getting segment labels of high quality from annotators has created a need
for methods that do not explicitly ask the annotator for the segment labels.

We therefore consider the setting where we only ask the annotator for a class labels of a given
data segment, called weak labeling. This means that the segment labels need to be automat-
ically constructed. The automatic construction of labels is often called pseudo-labeling [10].
In this thesis, we are interested in understanding the segment label noise resulting from the
weak labeling process, which is a form of pseudo-labeling, and we propose ways to reduce
this noise to get more precise annotation of the data.

3.1 FIX and ORC weak labeling

A commonly used weak labeling method is to partition the data into fixed and equal length
segments, we will call this FIX weak labeling. The annotator is then asked to provide class
labels for the data within each segment, and the corresponding segment label is inferred
from the boundaries of the segment. The FIX weak labeling method is illustrated in fig-
ure 1.3. For audio data, this means that the annotator assigns class labels to equal sized
audio segments. For images, the class labels would be assigned to rectangle segments, and
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so on.

Figure 1.3: The FIX weak labeling method for audio (left) and images (right). The data is partitioned into equally fixed sized
segments, and the annotator is asked to assign a class label to these segments. In these examples we can see how
FIX introduces false positives, the parts of the class label that do not overlap with the local structure.

Variations of FIX weak labeling have been used to collect many of the large scale audio
datasets that exist today. Annotation of AudioSet [11], which is still one of the largest and
most used audio datasets today, was done by selecting a subset of 10 second segments to
be weakly annotated. A more recently collected dataset called MAESTRO Real [8] was
annotated by asking for class labels of 10 second segments with 9 second overlap to reduce
segment label noise, and by asking five annotators to annotate each segment to reduce class
label noise. They end up with multiple class labels for each part of the audio data and
perform a weighed majority vote, based on an estimate of annotator competence, to get a
single label for each part of the data.

The segment size as well as the overlap has an effect on the segment and class label noise.
Too small segments may result in the annotator missing the presence of a local structure,
which can introduce class label noise, but too large segments will introduce segment label
noise. In general, smaller segments and larger overlap also mean that the annotator has
to assign more class labels which increase the annotation cost. Which segment size and
overlap to choose therefore depends on assumptions of the annotators’ ability to detect the
local structures. For some local structures the annotator may have to observe the whole
structure to give a correct class label.

In Paper A we develop a theory for the limits of FIX weak labeling in 1 dimension (e.g.,
audio). We restrict ourselves to the setting where there is no overlap between the segments,
and study the effect that the annotator model has on the resulting segment label noise
for varying segment sizes. We introduce a metric called query intersection over union
(QIoU), and an intuitive way to think of this metric is that 1−QIoU roughly correspond
to the segment label noise for a given segment. Using this we develop an expression for the
segment size that will minimize the segment label noise in expectation for a given annotator
model and data distribution.

We compare to an oracle (ORC) weak labeling method, which should be considered as
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an upper bound that we can not know in practice. The ORC weak labeling method is
illustrated in figure 1.4. It asks the annotator to assign a class label to the ground truth local
structures. By construction this method will never introduce segment label noise, it will
also always ask the annotator for the fewest possible number of class labels (three in the
audio example, and two in the image example).

Figure 1.4: The ORC weak labeling method for audio (left) and images (right). There are no false positives, and we ask for the
fewest number of class labels, 3 in the audio case, and 2 in the image case.

It may seem counterintuitive to call this ORC weak labeling, since this method gets labels
that are of equal quality as the best strong labeling method where the class labels and seg-
ment labels are given by an oracle annotator. However, it is a weak labeling method in
the sense that it only asks the annotator for class labels and never for segment labels. Thus
acting as an upper bound on weak labeling, which we can not know, but that we can try
to estimate in practice.

This highlights the potential of modelling the ORC weak labeling method by exploiting
properties of the local structures, such as local similarities, dependencies and coherence, to
automatically construct the segment labels, which is what we do in Paper B. In Paper B we
use these properties to create segments that are adapted to the sound events of interest, and
show that this can lead to higher quality labels at a reduced annotation cost. This is called
machine guided annotation, which is the topic of the next chapter.
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Chapter 2

Machine guided annotation of local
structures in data

”The real problem is what can man and machine do together and
not in competition.”— Richard W. Hamming

In this chapter we will look at machine guided ways to reduce the annotation cost of lo-
cal structures in data. We will introduce the annotation loop and the different ways to
reduce annotation cost. Then we will connect Paper B-D to these, and finally discuss some
differences of our proposed method and other methods.

1 The data annotation loop

We consider the setting where the annotator can only provide class labels for given data seg-
ments. The boundaries of the local structures therefore need to be automatically estimated,
and then the annotator is asked to attribute a class label to the data segment contained
within the boundaries.

Let us start with the generic annotation loop given in Algorithm 1. The algorithm takes
as input a set of unlabeled data DU = {xi}ni=1, a model M, and a performance criterion
τ . The algorithm iteratively samples the next data point x to be annotated from the set
of unlabeled data points, asks an annotator to label that data point, and then updates the
model using the new annotation. The new model performance τM is then evaluated, and we
continue this annotation loop until a satisfactory model performance τ has been reached.
The output of the algorithm is the set of m labeled data points DL = {(xi, yi)}mi=1, that
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results in a model M of satisfactory performance τM ≥ τ . The set of unlabeled data points
DU that we want to annotate can for example be a set of audio recordings, or a set of images
such as those illustrated in figure 1.1 in the previous chapter, and the goal is a label y for
each data point x that describes the local structures in it.

Algorithm 1 Annotation of data
1: Input: Unlabeled data DU = {xi}ni=1, model M, performance criterion τ
2: Output: Labeled data DL
3: DL ← ∅
4: τM ← evaluate model M
5: while τM < τ do
6: sample and remove x from unlabeled data DU
7: annotator gives label y to x and adds (x, y) to labeled data DL
8: update model M using labeled data DL
9: evaluate the model to get performance τM

10: end while
11: return DL

We are interested in ways to reduce the total annotation cost to get a model M with per-
formance τM ≥ τ . There are many ways to achieve this goal, each focusing on a separate
line in Algorithm 1.

Firstly, looking at line 6, we can sample the next data point x such that the gain in model
performance is maximized when x is annotated (using knowledge of M). This is the goal
of works in active learning [12, 13].

Secondly, looking at line 7, we can either reduce the annotation cost c associated with the
annotator giving the label y to x, or we can improve the quality of the annotation y. A
higher quality annotation should lead to a higher gain in model performance. In Paper B
we propose a method to increase the label quality of y for a given x at a reduced annotation
cost c. We do this by using the model M to guide the annotator towards a higher quality y.

Lastly, looking at line 8, we can design models M that gain more in performance from each
update. In Paper D we propose a few-shot learning method which is designed to learn a lot
from only a few annotated examples, and in Paper c we propose a differentiable log-Mel
spectrogram (DMEL) that can be optimized jointly with the model M.
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2 Increasing the label quality at a reduced annotation cost

Increasing the quality of the label y given by the annotator for data point x can be done
by increasing the labeling capability of the annotator. This can be done, for example, by
choosing an expert annotator, or increasing the annotators’ ability to perform the task [14].
Both these are ways of changing the properties of the human annotator, which we will not
consider here.

We can also guide the annotator during the annotation task in ways that facilitate higher
quality. This can be done, for example, by providing better annotation interfaces [15], or
by doing parts of the annotation work automatically [16, 17, 18]. Automating parts of the
annotation work has the benefit that label quality can potentially be increased at the same
time as the annotation cost is reduced. In Paper B we propose at a weak labeling strategy
towards this end.

Let us consider the annotation cost associated with assigning a label y to a data point x
(line 7 in Algorithm 1). As described in section 2, the label y = (s, c) consists of a set of
segment labels s = {s1, . . . , sk} that partition the data point x (e.g., an audio recording)
into k disjoint data segments that completely cover x, and a set c = {c1, . . . , ck} of the
k corresponding class labels given by the annotator. The partitioning of x into k disjoint
segments need to be done automatically since we are restricted to only ask the annotator
for class labels. The annotation cost can therefore be written as ck where c is the cost of
assigning a class label to a data segment. If we need to annotate m data points to achieve
model performance τ the total cost therefore becomes mkc. We can reduce this cost by
reducing any of the three factors in the product. We will consider m and k in this thesis, as
c is a property of the human annotator.

The number of needed annotations can be reduced if the quality of the labels is increased.
The quality of the label y can be affected by class label noise and segment label noise (see
section 2). Let Q(x, y) be a measure of the quality of the label y given to x with respect to
the true class labels and local structures. Let Q̄ = 1

n
∑

(x,y)∈DL
Q(x, y) denote the average

label quality of the annotated dataset DL resulting from Algorithm 1.

In Paper B we propose a method that makes use of the modelM to partition x into segments
that are better adapted to the local structures of interest. We call this machine guided
annotation, because the model M is used to guide the annotation towards higher quality
segment labels. Further, the model is updated with each new annotation. Initially, this
may lead to noisy segment labels, but as the model is updated this noise is reduced. We
empirically show that this happens, and that it leads to a higher label quality on average for
the same annotation budget k compared to other commonly used methods. An improved
average label quality Q̄ means that the number of annotation rounds m needed to reach
model performance τ is effectively reduced.
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Automating parts of the annotation work does come with certain risks. If the automatically
constructed segment labels contain a lot of segment label noise, then we may end up with
lower quality labels instead. We have not observed this to be a problem in Paper B, but
it is important to be aware of this risk. However, a nice property of first constructing the
segments and then asking the annotator to give them class labels is that if the segments are
noisy, then the annotator can notice this and take appropriate actions.

There is a subtle difference in this setup to other recently proposed pseudo-labeling methods
for time series data, where the weak labels are given before the pseudo-labeling. In [16, 18]
the weak label is first collected for a given point in time and then propagated to cover the
local structure according to a temporal coherence criterion, and in [17] the weak labels are
used to train a machine learning model which then predicts the pseudo-labels for the local
structure, and then another model is trained on the pseudo-labels.

In our setup, by performing the weak-labeling after the pseudo-labeling we make sure that
the annotator looks at the pseudo-labels, giving a natural quality assurance to the labeling
process.

3 Learning more from the annotations

Broadly speaking, this is the goal of most work in supervised machine learning. We want to
develop models that learn well from annotated training data, meaning that they generalize
to some annotated evaluation data. However, there are specialized research directions such
as few-shot learning, where the goal is to learn well from very few training annotations [19,
20, 21, 22]. Few-shot learning methods are, however, typically not designed to scale with
more annotations. So, there is a trade-off here, and which way to model the data depends
on the budget you have for annotation. If the budget is very low you may consider few-shot
learning methods such as the one explored in Paper D, and if the budget is reasonably large
then you may consider more complex ways of modelling such as that explored in Paper c.

To realize the ideas in Paper B we need good ways of modelling audio data in general. In
Paper D we look at ways to make the most use of a few annotations. We do this by using
an event length adapted ensemble of prototypical neural networks [19]. The key idea in
the paper is to choose embedding functions for the ensemble that have been trained for
certain event lengths based on the event lengths of the few examples that we already have.
In Paper c we propose a version of the log-Mel spectrogram where the window length
of the underlying short-time Fourier transform can be optimized jointly with the neural
network model. The window length defines the resolution in time and frequency of the
log-Mel spectrogram, and optimizing this for the classification task at hand can lead to
stronger models. The log-Mel spectrogram is a very commonly used input representation
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for convolutional neural networks (CNNs) in audio.

4 The difference between active learning and active annotation

In principle, the active updating of the model with each new annotation proposed in Paper B
fits into the general framework of active learning, which is the reason active learning is in the
title of the paper. However, I now believe that it may be reasonable to distinguish between
them, and would like to propose the term active annotation for machine guided annotation
where the model is iteratively updated during the annotation loop.

In active learning, we typically consider the setting where the next data point x is sampled
to maximize some uncertainty criteria of the model (line 6 in Algorithm 1 depends on M).
The idea is that the data point x that the model is most uncertain about should be most
informative to annotate next, and that by biasing the data sampling process in this way we
can reduce the number of annotations needed to reach a satisfactory model performance.
The label noise is assumed independent of the data point to annotate.

In active annotation, the annotator is guided by the model M during the annotation of
a given data point x. This means that the label noise will depend on the data point to
annotate.

That is, active learning is about changing the sampling of x using knowledge of M, active
annotation is about changing the sampling of y given x using knowledge of M.
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Chapter 3

Conclusions and future work

1 Conclusions

We have developed a theory for weak labeling of local structures in data measured along 1
dimension, such as time series or audio data, and studied the limits of an approach com-
monly used in practice. We have compared this to an oracle method that solves the weak
labeling task optimally. Knowing the consequences of different choices when performing
weak labeling is crucial to make sure that the resulting annotations are of sufficient quality.
(Paper A)

The limits frame the weak labeling problem, and can be used to put current methods in
context. Further, the developed theory may give insights into ways to develop improved
weak labeling methods. Towards this end we have also developed a weak labeling method
that aims to model the oracle method by using each new annotation to further improve
the annotation quality through machine guidance. We have showed that this method of
annotation results in a higher label quality on average on all the studied datasets and for all
assumed annotator models. (Paper B)

We have also proposed a method to learn the resolution in time and frequency of the
typically used log-Mel spectrogram in audio modelling. We have showed that learning the
appropriate resolution for the task at hand as a part of model training can speed up the
training process, and lead to better performing models. (Paper c)

Finally, we have explored a modelling method that only requires as few as five annotated
local structures to perform well, and have proposed two ways of improving the robustness
of that method towards problems where the local structures vary a lot in size. (Paper D)
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2 Future work

The papers that have shaped this thesis the most are Paper A and Paper B, which are about
annotation of data with local structures, and in particular sound data. There are many
future research direction that could be explored on this topic.

2.1 FIX weak labeling in more than 1 dimension

In Paper A we derive a theory for FIX weak labeling of local structures that appear along
1 dimension of the data, such as in time series data. It would be interesting to extend this
theory into D dimensions, or at least into 2 and 3 dimensions such as images or point
clouds. We rarely annotate in more than 3 dimensions anyway.

The number of class label assignments needed should grow exponentially with D for the
studied FIX weak labeling method, but linearly with the number of local structures in the
data for ORC weak labeling, making the potential cost gain of adaptive methods higher in
more dimensions. Of course, modelling the ORC weak labeling method will also become
a harder task with more dimensions. Exploring what happens when more dimensions are
introduced is a very interesting research direction.

2.2 Active learning and active annotation in combination

While active learning is about changing the sampling of the data point x using the model,
active annotation is about changing the sampling of the label y given a data point x using
the model.

Clearly there will be a tension between these two processes if they are used jointly.

The best model we can hope to learn is a perfect model of the annotator, meaning that a
sample that is hard for the model should also be hard for the annotator to annotate, leading
to more label noise. By studying active annotation and active learning jointly, we may gain
new insights into this trade-off between label noise and hardness of sample and find that
the best way to learn may not be to always be exposed to the hardest sample of the problem,
but rather a reasonably hard sample. The question is: what is reasonably hard?

2.3 Model selection in the active annotation loop

The underlying model in Paper B is a prototypical neural network [19], which was developed
to learn quickly from only a few annotations. Unfortunately, the way this is done also means
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that the learning saturates rather quickly. We have seen this in experiments where the label
quality on a held out test set (not part of the paper) saturated after annotation of around
20 to 50 audio recordings.

Note that the label quality after saturation is better than that of the methods we compare
with, so it is still beneficial to use this approach. But, it would be even better if the label
quality just kept increasing until we eventually learn to model the ORC weak labeling
process. We will probably not reach this upper bound, but we should aim to.

A very interesting research direction would be to make the complexity of the model depend
on the number of annotations available through some model selection criteria. For exam-
ple, we have seen in other works on active few-shot learning [21] that a prototypical neural
network can have better performance than a linear classifier applied on the same embed-
dings when only a few annotations are available, but that the linear classifier becomes better
after a certain number of annotations. The question is when to make the switch from the
simple model (prototypical neural network) to the more complex model (a linear model
applied on the embeddings), and going further when to choose models with even higher
capacity as we accumulate more annotations.

2.4 Other annotator models

In Paper A we derive the theory for an annotator model that can detect presence of local
structures if a fraction γ ∈ (0, 1] of the local structure is contained within a given segment.
While this makes sense for some types of sound events, other assumptions may be more
applicable for other types of data.

In general, a better understanding of these properties of human annotators in practice
would be very beneficial, and empirical studies towards this end are encouraged.

2.5 Adaptive weak labeling of multiple classes

The adaptive weak labeling method proposed in Paper B is developed for presence or absence
annotation of a certain sound event class of interest. That is, to annotate multiple classes we
need to perform multiple binary annotation tasks. However, the underlying prototypical
neural network should be fairly easy to extend to multiple sound event classes of interest
to facilitate annotation of multiple classes in a single annotation pass. There are trade-
offs between multi-pass binary annotation and single-pass multi-label annotation [23], and
being able to choose between these would be beneficial.
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Modelling the annotation quality and cost of weak labeling of fixed
length segments in audio data

John Martinsson1,2, Olof Mogren1, Tuomas Virtanen3, Maria Sandsten2

1 Computer Science, RISE Research Institutes of Sweden
2 Centre for Mathematical Sciences, Lund University

3 Signal Processing Research Centre, Tampere University

Abstract

Training and evaluating machine learning models for sound event detection (SED)
require data with sound event annotations. A common way to annotate sound events
in audio recordings is to present fixed length segments (FIX) to an annotator who
gives each segment a class label. In order to better understand the limits of FIX
labeling we model the label quality and derive an expression for the associated cost.
We consider an annotator model that assigns a class label to a given segment if the
segment covers a large enough fraction of the event. We compare FIX labeling with
oracle (ORC) labeling that uses the ground truth event timings to derive the segments
for annotation, and we provide a thorough theoretical analysis which quantifies the
gap between the two methods. We show that the label quality of the FIX method
decreases with stricter annotator criteria while ORC always give perfect labels. We
further show that the cost of optimal FIX labeling grows linearly with the length
of the audio recording to annotate, while the cost of ORC grows linearly with the
number of events occurring in the recording. Our work provides theoretical grounds
for making informed decisions about the annotation process in sequence labelling
tasks, and a motivation for some of the recently proposed works that improves over
FIX in both cost and performance.

Proceedings: Unpublished manuscript

Keywords: Active learning, annotation, sound event detection, deep learning
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1 Introduction

Training and evaluating sound event detection (SED) models require audio data with event
labels, a description of which type of sounds that are occurring at different times in an audio
recording [1].

Sound events are distinct sounds that we can identify and recall based on their descriptions.
These events, like people talking or dogs barking, form the core elements of a sound scene,
helping us to interpret the environment around us. Class labels for these sound events are
typically short and descriptive, capturing the essence of what we hear, while the onset and
offset labels describe where the sound event starts and ends in time. When it comes to
annotating these sounds, manual annotation involves human annotators mapping audio
content to textual labels. The speed of annotation can vary depending on the annotation
task, and the annotations are inherently subjective, influenced by the annotator’s personal
experiences and perceptions [2].

Crowdsourcing is a promising method for obtaining sound event annotations for large
datasets. Using platforms like Zooniverse, crowdsourcing can quickly gather numerous
judgments, producing high-quality annotations through inter-annotator agreement mea-
sures [3]. Crowdsourcing is particularly suitable when the annotation task is broken down
into multiple easy to perform unit tasks [4]. The reason is that when crowdsourcing an-
notations we do not always know the expertise of the annotators, and the annotation task
therefore needs to be easy to understand and preferably easy to perform. This has been
shown to lead to more consistent and higher quality labels [3]. Easier annotation tasks can
also lead to happier and more motivated annotators due to the decreased level of effort and
skill needed to complete the task [5].

A way to break multi-class sound event annotation into many smaller unit tasks is to per-
form a binary annotation round for each sound event class. The trade-off between one
round of multi-label annotation and multiple rounds of binary annotation has been studied
by Cartwright et al. [6]. To further simplify the annotation task, we can ask the annotator
only to indicate the presence of a certain sound event in a given audio segment, called weak
labeling. The onset and offset of the event is then instead inferred from the timings of the
audio segment.

Binary weak labeling is attractive because the task is easy to understand and perform by
annotators, and thus suited for crowdsourcing annotations. This is the annotation setting
we consider in this work. The annotator is asked to recognize the presence of a given sound
event class in a given audio segment, and when no presence is detected the audio segments
is given the absence label.

An attractive way to collect binary weak labels in practice is to segment the audio recording
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Figure 1: Annotating an audio recording with three target events (green) using the ORC and FIX method with different budgets
B. The annotator is asked to annotate each query segment qi (omitted from figure for B = 30 and B = 60) with either
the presence (red) or absence (white) of the target event. The event labels from ORC are by definition optimal, while
the event labels from FIX vary in quality with the number of query segments B chosen.

into fixed length audio segments (FIX) [4, 3]. We will refer to this labeling process as FIX
labeling.

In general, two types of sound event label errors can occur: (i) incorrect class labels, and (ii)
incorrect onsets and offsets for the temporal activity of the sound events. The latter type of
label error is often a problem when performing FIX labeling.

Most audio datasets today consists of data collected using weak labeling [7]. The per-
formance of SED models, however, is known to improve with event labels that contain
precise onsets and offsets [8]. This becomes especially important when we want to count
the number of occurrences of an event class. For example in bioacoustics, where counting
the number of vocalizations of an animal species can be used to estimate population density
and draw ecological insights [9].

FIX labeling is also commonly used in active learning for sound event detection. The audio
data is divided into equal length query segments which are then chosen according to some
criterion. The chosen segment is then given a class label by an annotator [10, 11, 12].

We need to better understand the limits on label quality for FIX labeling, and the conse-
quences of choosing different segment lengths. This will allow us to make informed choices
on the segment length, and understand how and why to develop alternative annotation
method [13] which try to model ORC labeling.

Figure 1 shows the presence annotations (red) for an audio recording using either ORC or
FIX labeling with different number of query segments B. We query the annotator for a class
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label for each segment, and will often refer to these segments as simply a query. The top
panel shows the spectrogram for the audio recording with the target events shown in green.
The minimum number of queries needed to get event labels that are perfectly localized in
time using ORC is B = 7 in this case.

The annotations from FIX vary in quality depending on the number of queries used. The
presence labels for FIX can contain a lot of absence sounds (B = 7), and we may need many
query segments to see that there are at least three events (B = 30) occurring. Further, if
the annotator need to hear a fraction of the total event to detect its presence, then FIX will
miss events when we have too many query segments (B = 60). Here we have assumed that
that the annotator need to hear at least 50% of the entire event to detect presence. The
annotator therefore misses the third event when B = 60 since none of the query segments
now overlap with 50% or more of the event.

Correct onsets and offsets are not only important for training SED models, but also for
evaluating them. If our goal is a SED model that detect the temporal activations of events
well then the labels for the evaluation data must reflect this goal. Otherwise, we may end
up rejecting models that has learned to do what we want (e.g, models that can learn well
from incorrect onsets and offsets) in favor of models that do not (e.g., models that exactly
learns to predict the incorrect onsets and offsets).

Consider the event labels in figure 1, and assume that we only have access to labels from
FIX (B = 7) labeling. Further, assume that we have one model that can perfectly detect
the temporal activations of the events, and one that produce predictions exactly as the FIX
(B = 7) labels. Since our evaluation labels are incorrect we will have to reject the correct
model in favor of the incorrect model.

The goal of this paper is to better understand the gap in annotation quality and annotation
cost between FIX and ORC labeling under different annotator models and audio recording
distributions. To this end we introduce a metric for measuring the label quality of a query
segment which we call query intersection over union (QIoU). We derive an expression for
the expected QIoU for FIX labeling under certain assumptions and for different annotator
models. We also provide an expression for the number of query segments, B, needed to
achieve the highest QIoU in expectation using FIX.

We quantify the trade-off between the number of segments (B) and the quality of the event
labels (QIoU) for FIX. For example, in figure 1 the cost of having an annotator answerB = 7
queries is lower than the same annotator answering B = 30 queries, but the resulting labels
for B = 7 are also worse.

The theory can be used to understand which segment length to use for FIX to get the best
label quality and the cost of this choice. And the insights may facilitate further development
of annotation methods [13] that try to model the ORC labeling process to get stronger event
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labels.

2 Related work

In this section we will describe works related to sound event annotation.

2.1 Asking for strong labels

Strong annotation allows annotators to freely choose class labels and segment boundaries
(onset and offset) for the sound events. This can offer more detailed annotations, but
demand more from the annotators.

In bioacoustics, expert annotators often use spectrograms to visualize the audio recording,
and learn to recognize specific visual patterns of the sound events, helping them to annotate
without even listening to the recordings. This technique enables them to annotate exten-
sive audio data efficiently, focusing on specific classes of events like bird calls [14]. Strong
labeling can be successful when using expert annotators. However, the need for experts
means a higher cost, and also that the annotation may not scale, because there are only a
limited number of experts.

A recent audio data collection effort for Anuran sound events (AnuraSet) tried to miti-
gate the problem of limited specialists by using first asking for weak labeling of 1 minute
audio segments from both generalists (bioacoustic experts) and specialists (herpetologists),
followed by asking for strong labeling of a subset of the audio segments only from the
specialists [15].

Detecting the onsets and offsets of sound events is a hard task, and there is a lot of subjec-
tivity in defining these boundaries for the events. For example, will a sequence of multiple
footstep sound events be annotated as one long event or multiple short events? This de-
pends on how the annotator interprets the task [16]. And detecting consistent boundaries
for the sound event of a car passing by adds additional subjectivity to this [2], since the
sound changes very gradually there are no clear boundaries. The fact that different anno-
tators may interpret a strong labeling task in different ways is one of the reasons that weak
labeling, a much simpler task, can be preferred. Especially, when we have no guarantee on
the expertise of the annotators such as when crowdsourcing is applied [3].

As an example, a subset of 67K audio recordings from AudioSet has been strongly anno-
tated. The onset and offset of events were given by multiple annotators, each annotator
given the ability to correct the annotation from the previous annotator. However, even
allowing 5 such passes this rarely resulted in a consensus [8].
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Table 1: Large-scale audio datasets using variations of FIX labeling.

Dataset Task Fixed length
CHIME [17] Single-pass multi-label 4 seconds
AudioSet [18] Single-pass multi-label 10 seconds
MAESTRO Real [3] Single-pass multi-label 10 seconds
OpenMIC-2018 [5] Multi-pass binary-label 10 seconds

Hershey et al. [8] show that training even on a few strongly annotated recordings, in addi-
tion to weak labels, can result in better SED models than training only on weakly labeled
data.

2.2 Asking for weak labels

A common way to simplify the annotation task is to segment the audio recording automat-
ically, and then ask the annotator to perform the much easier task of assigning a class label
to each audio segment. A common approach is FIX labeling.

Fixed audio segments

FIX weak labeling is a common annotation strategy. Some large-scale audio datasets us-
ing variations of FIX labeling are presented in table 1. Two different annotation tasks are
usually considered: single-pass multi-label annotation and multi-pass binary-label annota-
tion [6]. Single-pass multi-label means that annotators are asked to recognize the presence
of multiple event classes during a single pass through the data, and multi-pass binary label
means that we ask annotators to detect presence of a single event class at a time, and we
perform one annotation pass for each class of interest. Cartwright et al. [6] has studied
the trade-offs between multi-pass binary-labeling and single-pass multi-labeling and found
that binary labeling is preferred when high recall is needed. They used 10 second segments.

The FIX labeling of AudioSet [18] was done for a selection of non-overlapping 10 second
segments from the entire audio dataset. The information gained about temporal activations
of sound events is therefore limited by the 10 second segments, that they do not overlap, and
that they are not necessarily temporally adjacent. Further, Shah et al. [19] used AudioSet
to simulate weak labeling using 10 (original), 30 and 60 second segments, and show that
this leads to a drop in SED model performance.

In contrast, FIX labeling of MAESTRO Real [3] was done by crowdsourcing redundant
weak labels for each 10 second segment, where segments overlap by 9 seconds. This proce-
dure give a much more information about the temporal activation of sound events. The 9
second overlap means that we can get a temporal resolution of 1 second for isolated sound
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events, but the 10 second segment also means that if two sound events occur closer than
10 seconds then the procedure will not label them as two distinct events.

In this work we restrict ourselves to study the properties of FIX labeling where the segments
are adjacent, but do not overlap. Further we consider the setting of a multi-pass binary-label
annotation task, which is suitable for crowdsourcing annotations because of the simplicity
of the task. However, note that the theory derived for the multi-pass binary-label task can
be applied also to the single-pass multi-label setting under certain assumptions on the data
distribution and the annotator (see the discussion in section 8).

Adaptive audio segments

An alternative approach is to segment the audio recording using the structure of the sound
events to better adapt each segment to the sound events of interest. The optimal method
is ORC labeling (not known in practice) which use the ground truth segmentation of the
audio. Adaptive audio segment methods try to model ORC labeling.

Zhao et al. [20] segment the audio recordings by using change point detection on the cosine
distance between temporally neighbouring embeddings of the audio recording. The audio
segments are pre-computed and then weakly labeled.

Martinsson et al. [13] propose an adaptive change point detection method which learns to
better segment the audio with each new annotation during the annotation process.

Pseudo labeling or label propagation

Another approach, which is subtly different from adaptive audio segments, is to automat-
ically adjust the weak labels to the data after they have been given. This is called pseudo
labeling, or label propagation. The idea is that if we have a label for part of the data, we
may be able to adjust the label using the structure of the data.

Shin et al. [21] propose a framework where weak labels are given to single points in time in a
time series, the labels are then propagated to other temporally neighbouring data according
to a temporal coherence criterion. For an audio recording this would mean that we simply
have to click on a sound event when it appears to indicate presence, and then the presence
label is automatically propagated to the rest of the event.

Dinkel et al. [22] propose to first train a model on weakly labeled audio data, then predict
new pseudo labels for the same data, and then finally train a new model using the predicted
labels.

There is a subtle difference between these approaches, where a weak label is first collected
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and then adjusted, and methods using adaptive audio segments, where the segments are
first adjusted and then weakly labeled. By first constructing the segments and then ask for
weak labels we ensure that there is always a form of verification of the segmentation in the
annotation process.

2.3 Our contribution

In this paper we model a version of FIX labeling to better understand the annotation quality
that can be achieved for a given annotator model and sound event length distribution. We
relate this to ORC labeling (upper bound not know in practice) to better understand the
gap between these two weak labeling approaches. By quantifying the gap between FIX and
ORC we can better understand the potential of adaptive audio segment methods and where
current methods [20, 13] are placed within these limits.

In principle the analysis is not limited to audio, but applies in general to any time series
with events under the stated assumptions.

3 Problem setting

We consider the multi-pass binary-labeling setting where we want to associate presence
labels to different classes of sound events in audio recordings through multiple passes.

We model an audio distribution and an annotator which can only weakly label the presence
or absence of sound events in a given audio segment. We are interested in the label quality
of the presence annotations under different assumptions about the annotator model and
the audio distribution.

Below we explain how the sound events for the audio data and the annotator are modeled
in this work.

3.1 Audio data

A sound event consists of a start time ae ∈ R, end time be ∈ R and a class c ∈ C, denoted
as e = (ae, be, c) with event length de = be−ae. We refer to the event timings (ae, be) as the
onset and offset, and c as the event class. The audio recordings are assumed to be of finite
length T and we assume that the events e can occur everywhere with equal probability as
long as the whole event is in the recording, i.e., ae ∈ [0,T− de].
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3.2 Annotator model

For a given sound event class c ∈ C, the annotator is modeled to indicate the presence or
absence of that class of event in a given audio segment. Let q = (aq, bq) denote the query
segment where aq ∈ R is the onset, and bq ∈ R is the offset of the segment. The query
length is dq = bq− aq. We then simulate the process of asking an annotator if event class c
is present in q. For example, using FIX labeling the audio recording is segmented into fixed
length query segments, where the onset and offset of each query segment are illustrated as
dashed red lines in figure 1, and the annotator is asked to indicate presence (red) or absence
(white) of event class c for each segment.

An annotator will need to observe some part of the event to feasibly detect it’s presence.
We therefore model the annotator so that a fraction γ of the sound event e needs to be
in the query segment q for the annotator to detect the presence of class c, which leads to
definition 1 (event fraction) and definition 2 (annotator criterion) below.

Definition 1. The event fraction is the fraction of the total event present in a query segment,

h(e, q) =
|e ∩ q|
de

, (3.1)

where e ∩ q denotes the intersection between the query segment (aq, bq) and the event
timings (ae, be) of class c, and de the event length.

Definition 2. The annotator criterion γ is the smallest event fraction in query segment q
assumed necessary for the annotator to detect the presence of event e,

h(e, q) ≥ γ. (3.2)

What this means is that for a given sound event class c ∈ C to annotate, if an annotator is
given a query segment q = (aq, bq) and it overlaps with a sufficient fraction γ of a sound
event e = (ae, be, c) of the given class c, then the annotator will give the presence label (1)
to q, and otherwise the annotator will give the absence label (0) to q.

A non-strict annotator criterion, when γ is close to 0, means that the simulated annotator
can detect the presence of very small fractions of sound events in query segments, and a
strict annotator criterion, when γ is close to 1, means that a large fraction of the sound
event is needed for the annotator to detect it’s presence in the query segment.

Defining the annotator criterion to be a fraction of the sound event makes sense for sounds
where the meaning of the sound is only apparent after hearing enough of it. How large this
fraction is depends on the meaning that we want to attribute to the sound.

Let us consider an audio recording of a human who speaks a complete sentence. To give
the presence label indicating ”a human is talking” the annotator can probably listen to any
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x seconds of the recording. However, if we want to attribute a class label that conveys more
meaning, for example, ”a human is talking about an animal”, then the annotator will need
to listen to enough of the spoken sentence to deduce that meaning.

Another example is for detecting the presence of bird song in bioacoustics. Bird song is
made up of a sequence of notes, and the meaning that is conveyed depends on this sequence.
To understand the class of the the bird song the annotator will often need to hear at least a
fraction of these notes.

The annotator criterion is an assumption about this fraction. When γ = 1 we say that
the annotator would need to hear the whole sentence spoken by the human or the whole
sequence of notes sung by the bird in the above examples to detect the presence of the
meaning that we seek. And conversely, when γ is close to 0 we say that the annotator need
to hear almost none of it.

The only way to be sure that the annotator can detect the presence of the event is when
γ = 1, all other choices for γ are assumptions about the annotators ability to detect the
events, which in practice will depend on both the annotator and the type of event.

3.3 Quality of the presence labels

We do not model the type of annotation error where an annotator can falsely detect the
presence of sound events or falsely miss the presence of a sound event. Instead, we focus on
the type of annotation error introduced by the imprecise onsets and offsets which is typical
for weak labeling.

Note that when a given query segment q does not overlap with any sound event e of class
c, i.e., h(e, q) = 0, then the annotator will always indicate absence. That is, in the non-
overlapping case the absence annotation will always be correct. We therefore do not include
these cases when formulating the QIoU metric in the next section. Instead we focus only
on the the presence labels, which can only occur in the case of overlap, i.e, h(e, q) > 0. A
reason for this is that the absence class is typically a large majority and including it would
mean that the more absence sounds in the data the better the overall score, which is a
property that we do not want for the metric.

We are interested in the annotation quality of the presence labels in expectation for different
annotator models and data distributions when using FIX labeling and ORC labeling.
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4 Analysis of FIX

In this section we define the FIX labeling method and derive an expression for the expected
QIoU of the event labels. We assume a simplified sound event distribution where audio
recordings only contain a single event with a deterministic event length, arguably the sim-
plest sound event distribution to annotate. In section 7.1 we use this expression, derived
for the simplified case, to study more complex distributions with varying event lengths and
varying number of events.

4.1 The FIX labeling method

The FIX method splits the audio recording into equal length query segments and then
ask an annotator to give each of these a class label. This method is commonly used in
practice [10, 11, 12], which is why we want to understand the limits better. Let BFIX denote
the number of query segments that we are allowed to use, then the query segments are
defined as

QFIX = {(a0, b0), (a1, b1), . . . , (aBFIX−1, bBFIX−1)} = {q0, . . . , qBFIX−1} (4.1)

where the start and end timings of each query segment is qi = (ai, bi) = (idq, (i + 1)dq)
and the fixed query segment length is dq = T/BFIX.

4.2 The query intersection over union (QIoU)

Definition 3. The query intersection over union (QIoU ) is defined as the overlap between
the query q and the event e divided by the query length dq when the annotator criterion is
fulfilled, and otherwise 0,

F(e, q, γ) =

{ |e∩q|
dq , if h(e, q) ≥ γ,

0, if h(e, q) < γ.
(4.2)

QIoU is designed to only measure the annotation quality of the presence class, not the ab-
sence class. The considered annotator model can not falsely detect the presence of an event
in a query segment with no overlap with an actual event. Therefore, for all query segments
that do not overlap with an event we have perfect absence labels. Presence annotations can
only be given by the annotator model when there is an overlap between the given query
segment q and an event e of class c. We therefore only consider the cases when there is
overlap (see also section 3.3).
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If the annotator criterion is fulfilled, then the annotator detects the presence of a sound
event e of class c in query q, for the considered event class c ∈ C. In this case F(e, q, γ) =
|e∩q|
dq , which is equivalent to the event density for query q [19, 23]. Event density is the

fraction of the query q that contains the event, that is, the fraction of true positives. Con-
versely, 1 − F(e, q, γ) is the fraction of false positives. A QIoU of 1 therefore means that
the query segment weakly labeled with the presence class only contains the presence class,
and thus has an event density of 1.

If the annotator criterion is not fulfilled, then this means that we entirely miss the fraction
of the event that overlaps with the query, and we set the QIoU to F(e, q, γ) = 0.

Note, that a high QIoU for the presence class will necessarily result in high quality absence
labels. When the average QIoU over all query segments is 1 this means that we have perfect
labels for both the presence and absence classes.

4.3 The expected QIoU for FIX

In this section we derive an expression for the QIoU in expectation over a distribution
of audio recordings with sound events to annotate. Since the annotator criterion is never
fulfilled when there is no overlap between a query and an event and we therefore always get
the absence label, we know that the absence labels are perfect in this case. The only case
where the labels are not necessarily perfect is when there is overlap. We therefore consider
only the cases with overlap and derive the QIoU in expectation for the presence class and a
given sound event distribution. Let et = (aq− de+ t, aq+ t) denote the event that ends at
the start of the query segment when t = 0, and that starts where the query segment ends
when t = de + dq. Now, t ∈ [0, de + dt] describes all possible occurrences of overlap.

To get the expected QIoU we therefore now need to compute

Et∼p [F(et, q, γ)] =
∫ de+dq

0
F(et, q, γ)p(t)dt, (4.3)

=
1

de + dq

∫ de+dq

0
F(et, q, γ)dt. (4.4)

where p(t) is the probability distribution for the realizations of t. Since we assume that
the sound event can occur anywhere in the audio recording with equal probability we get
p(t) = 1/(de + dq).

We plot F(et, q, γ) for t ∈ [0, de + dq] in figure 2, and see that there are five distinct areas
under the curve, some of them symmetrical around the center. Computing the integral of
F(et, q, γ) for t ∈ [0, de + dq] leads to theorem 1.
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Figure 2: The QIoU F(et, q, γ) for t ∈ [t0, t5], where t0 = 0 and t5 = de + dq. In appendix 1 we show how t1, t2, t3 and t4 can
be defined as functions of de, dq and γ. Here, they are abstract and indicate the states t where F(et, q, γ) changes
behaviour.

Theorem 1. The expected QIoU of an arbitrary query segment q of length dq which overlaps
with an event e of length de using annotator criterion γ is

P(de, dq, γ) = Et∼p [F(et, q, γ)] =

{
1

de+dq

[
de − d2

e γ
2

dq

]
, if dq ≥ γde,

0, if dq < γde.
(4.5)

Proof. See appendix 1.1 for the full proof. Basically, the plot of F(et, q, γ) for t ∈ [0, de+dq]
in figure 2 show that there are five different regions to integrate over: (t0, t1), (t1, t2), …,
(t4, t5). We break the integral in Eq. 4.4 into five separate integrals, and we show how to
define t0, . . . , t5 in terms of de, dq and γ and then solve each of the integrals separately for

the cases: de ≥ dq and de < dq. In both cases we arrive at the expression 1
de+dq

[
de − d2

e γ
2

dq

]
for the expected QIoU, and finally taking the case where dq < γde, when the annotator
criterion can never be fulfilled and F(et, q, γ) is always 0, into consideration we arrive at
theorem 1.

Note that in theorem 1 we have implicitly assumed that only one sound event overlaps with
any given query segment. This is not always true in practice, but we show by simulation in
section 7.1 that breaking this assumption does not have a large effect.

Theorem 1 gives us an expression for the expected QIoU when query segments of length dq
are used to detect events of deterministic length de for a given annotator criterion γ. We
use theorem to prove the next theorem, which states what query segment length dq that
should be used to maximize the expected QIoU.

Theorem 2. The query length that maximize the expected QIoU is

Qmax(de, γ) =
√

d2
e (γ

2 + γ4) + deγ2. (4.6)
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Proof.
∂P
∂dq

=
de(d2

e γ
2 + 2dedqγ2 − d2

q)

d2
q(de + dq)2

, (4.7)

and solving ∂P
∂dq = 0 for dq under the constraint that dq ≥ γde, de > 0, and γ ≥ 0 gives

the solution Qmax(de, γ) =
√
d2
e (γ

2 + γ4) + deγ2. We have visually checked that the
second partial derivative ∂2P

∂d2
q

is negative at d(max)
q for γ ∈ (0, 1]. Which makes this a local

maxima.

Theorem 2 tells us which query length dq that should be used for FIX labeling to maximize
the expected QIoU. We can use this expression to better understand the annotation cost
(number of query segments) necessary to maximize QIoU in expectation. And by inserting
setting dq = Qmax(de, γ) in theorem 1 we get an expression for the maximum expected
QIoU.

Theorem 3. The maximum expected QIoU for an arbitrary event of length de is

Pmax(γ) = 1 + 2γ2 − 2
√
γ2 + γ4. (4.8)

Proof. From theorem 2 we know that Qmax(de, γ) =
√
d2
e (γ

2 + γ4) + deγ2 maximize the
expected QIoU P(de, dq, γ). We can thus define the max QIoU

Pmax(γ) = P(de,Qmax(de, γ), γ) (4.9)

=
1

de +
√
d2
e (γ

2 + γ4) + deγ2

[
de −

d2
e γ

2√
d2
e (γ

2 + γ4) + deγ2

]
(4.10)

= 1 + 2γ2 − 2
√
γ2 + γ4 (4.11)

Note that Pmax(γ) is only a function of γ. That is, the maximum expected performance
is independent of the event length. Intuitively we only need a longer queries if we have
longer events.

Finally, we use the expression for the query segment length Qmax(de, γ) that maximize the
expected QIoU to compute how many query segments are needed for an audio recording
of length T.

Theorem 4. The number of queries B(max)
FIX which are needed by FIX to maximize the QIoU

in expectation for an audio recording of length T when de = 1 is

B(max)
FIX =

T
γ(γ +

√
1 + γ2)

. (4.12)
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Proof. If you divide a recording of length T into B(max)
FIX equal length segments you get a

segment length of γ(γ +
√

1 + γ2), which by theorem 2 maximizes the expected QIoU
for de = 1.

Theorem 4 tells us the number of query segments needed to maximize the expected QIoU
when FIX labeling audio recordings of length T with a single randomly occurring event of
length de. Since there is arguably no simpler audio data distribution to annotate than that
where recordings only contain single events of a deterministic length (except for when no
events occur at all). We can treat Pmax(γ) as an upper bound on the maximum expected
QIoU for any audio distribution (we see this empirically in the results in section 7), and
B(max)

FIX is tells us how many segments the annotator has to weakly label.

5 Simulation of FIX labeling

To validate the theory derived in the previous section, we simulate FIX labeling of dif-
ferent audio recording distributions and compare the average simulated label quality with
theoretical results from section 7.

We sample 1000 audio recordings of length T with M events. Each event length is sampled
from either a uniform, normal, or gamma distributed event length distribution. We also
consider the sample of a real event length distribution for dog barks and baby cries from
the NIGENS dataset [24]. An event of the sampled length is then randomly placed in the
recording, where the start time ae is drawn uniformly at random from [0,T− de].

Since we only consider the absence or presence of an event class, we merge overlapping
events. This means that for when many events are sampled (large M), the event length
distribution can change due to the merging. Neither FIX nor ORC can handle overlapping
events without additional information from the annotator. The optimal way to resolve these
using an annotator model that can answer, e.g., how many events are occurring in a given
query segment is an orthogonal but interesting research direction.

We then compute the average QIoU over the sampled audio recordings for different an-
notator criterion γ and query lengths dq. We do this for γ ∈ [0.01, 0.99], and dq ∈
[de,min/100, 2.5de,max]. The range of dq is set because we can not feasibly search over all
possible dq. In theory, for γ = 1 the query length that maximize the expected QIoU is
de(1 +

√
2) ≈ 2.5de, and for γ = 0.01 it is de(γ(γ +

√
1 + γ2)) ≈ de/100. We there-

fore compute the minimum sampled event length de,min and the maximum sampled event
length de,max from the 1000 audio recording samples, and set the limit according to this
and the theory. We can then get the maximum average QIoU for each considered γ and
the corresponding optimal query length to compare with the theory.
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6 Analysis of ORC

The ORC labeling method uses the ground truth event labels to construct the query seg-
ments, and then ask the annotator to give a class label to these. The query segments are
constructed using the true event labels

QORC = {(a0, b0), (a1, b1), . . . , (aBORC−1, bBORC−1)}, (6.1)

where (ai, bi) is the ith true event label. BORC is the sufficient number of queries to get a
QIoU of 1. The number of queries needed grow linearly with the number of target events
M in the given audio recording.

Figure 3: The four cases with different number of absence segments (numbered) between the events (green) in an audio record-
ing. In this example we have 3 events, and either (a) 4, (b) 3, (c) 3, or (d) 2 absence segments. On average 3 absence
segments if assumed equally probable.

In figure 3 we show an example with M = 3 sound events without overlap. Between each
sound event there is a segment with the absence of an event giving M−1 absence segments
in total (see (d) in figure 3) then we potentially have 1 extra absence segment at each end
of the recording (see (b-d) in figure 3). If we assume these cases to be equally probable we
end up with an average of M absence segments. The total number of segments needed on
average to query the audio recording perfectly and get a QIoU of 1 is therefore

BORC = 2M. (6.2)

This tells us how few queries we can use and still get perfect labels with ORC. This is used
as a reference and an upper bound on what is achievable.

7 Results

In this section we present the results of the simulated annotation process, and show how
these connect to the derived theory. We start by looking at the annotation quality for FIX
and ORC, and then at the annotation cost.
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7.1 Annotation quality

Single event with deterministic length

These results are derived using the simulation setup described in section 5, with M = 1 (a
single event) and de = 1 (deterministic length).

In figure 4 we show the simulated maximum expected QIoU (left) and the corresponding
query length for different γ (right). Pmax(γ) is the maximum expected QIoU achievable
with annotator criterion γ for the considered event length distribution. We can see that
the simulated average QIoU closely follows the expected QIoU, and that the corresponding
segment length leading to this maximum is the same in in theory and simulation.

Figure 4: In the left panel we show the maximum expected QIoU, Pmax(γ), for different γ, and the average maximum QIoU
from the simulations. In the right panel we show the query length that leads to this maximum in theory, Qmax(de, γ),
and in simulation. The theory follows the simulations well.

Figure 4 tells us that, for example, if the annotator needs to hear more than 50% of the
sound event to detect presence (γ = 0.5) then the best label quality that can be achieved
is Pmax(0.5) ≈ 0.38. This means that on average around 62% of the annotated query
segments contain absence sound (a lot of false positive labels). We also see that the query
length that give the maximum QIoU is Qmax(1, 0.5) ≈ 0.96. There is a large gap to the
ORC method which always give a QIoU of 1 as long as at least BORC ≥ 2M queries are
used. In general, we can see how the maximum QIoU deteriorates with a growing γ, and
which query segment length to choose to maximize QIoU in expectation.

The simulations validate that the theory holds for the case where audio recordings contain
a single event of deterministic event lenght (de = 1).
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Single event with stochastic length

In the previous simulations and for the derived theory we have assumed a single event with
deterministic length, now we relax this assumption to stochastic event lengths. We do this
to study the effect of the event length distribution on the maximum expected QIoU and
the optimal query length. The expected QIoU over a distribution of event lengths for a
given γ and query segment length dq can be written as

P(dq, γ) = Ede∼p
[
P(de, dq, γ)

]
(7.1)

=

∫ ∞

0
P(de, dq, γ)p(de)dde, (7.2)

where p(de) denotes the probability distribution for the outcomes of the random event
length variable de ∼ p(de).

In each figure we present the derived theoretical rules for the simplified event length dis-
tribution Pmax(γ) and Qmax(de, γ), the results from integration of Eq. 7.2 with different
event length distributions p(de) (numerical), and the simulated results using the procedure
described in section 5 (simulated).

Since Qmax(de, γ) is derived for a deterministic event length de, and require a choice of this
value, we set de to the average event length for each distribution in these experiments as a
heuristic. We then present the maximum expected QIoU for different γ (left in figures)
and the query segment length that maximize the expected QIoU (middle in figures), and
the histogram for the considered event length distributions (right in figures).

Figure 5: Normal distributions with different means.
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Figure 6: Normal distributions with different variances.

In figure 5 and figure 6 we see that the mean and variance of the normal distribution has a
small (if any) effect on the maximum expected QIoU, but the mean does affect which query
segment length that maximize the expected QIoU. We also see that Qmax(μ, γ) follow the
simulated and numerical optimal query length well for all considered normal distributions,
when μ is set to the average event length for the considered event length distribution. The
average event length can be used as a heuristic value if we only know the average and not
the true distribution to integrate over.

Figure 7: Gamma distributions with different shape and scale parameters.

In figure 7 we can see that a gamma distribution does affect the maximum expected QIoU,
and that simply setting de to the average event length of the distribution in Qmax(de, γ)
leads to underestimating the optimal query length. The gamma event length distribution
hard for FIX, since FIX labeling can not achieve good label quality for short events and long
events at the same time. The gamma distributions considered here have a high probability
of short events, and decreasing probability for longer events, which means that there is a
trade-off for the FIX labeling method which must optimizing for the many short events
(and possibly miss the long events due to the annotator criterion), or optimize for the long
events (and thus necessarily give imprecise onset and offsets for the short events).
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Figure 8: Dog and baby event length distributions from the NIGENS dataset [24]. These annotations have been made with a
strong guarantee for high quality onsets and offsets.

In figure 8 we validate the theory against a real sample of event lengths from either baby
cries or dog barks. Numerical integration between the derived expression and the histogram
predicts the simulations well.

Multiple events with stochastic length

In these experiments we allow multiple events to occur in the same recording (M > 1), and
therefore no longer enforce the implicit assumption that a query segment never overlaps
with more than one event.

In figure 9 we sample 30 events of length de = 1 for each audio recording. We can see that
this does have a an effect on the expected maximum QIoU and the corresponding query
length, but not that large.

Figure 9: 30 events with event length de = 1 occur in each sampled audio recording.

In figure 10 we sample 100 events of length de = 1 for each audio recording. This is an
extreme case, where the event density of the recording is very high. We would not expect
this to happen in practice. But, now the effect starts to show. However, the theory still
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matches the simulations.

Figure 10: 100 events with event length de = 1 occur in each sampled audio recording.

In all experiments we can see that Pmax(γ) acts as an upper bound on the expected QIoU for
any of the other considered event length distributions. Arguably, any recording distribution
which has more than a single event, or events of varying length should be at least as hard
to annotate with FIX as the one with only a single event of deterministic event length.

7.2 Annotation cost

Since we now know the optimal query length, we can study the cost of getting maximum
expected QIoU for different annotator models. Let us consider the cost model

C(T,B) = (1− r)T+ rB (7.3)

where 1 − r is the cost of listening to a second of audio, and r is the cost of answering a
query. We can then look at the relative cost of annotating an audio recording of length T
with M sound events of length de = 1 using either FIX or ORC. The cost is computed
for the number of queries that maximize the expected QIoU for both methods. For FIX
this is B(max)

FIX = T/γ(γ +
√

1 + γ2) (see theorem 4). We study the cost of FIX for this
optimal query length, and compare with different costs for ORC. For ORC the expected
QIoU is 1 as long as BORC ≥ 2M queries are used. In practice we need to estimate BORC.
We simulate different degrees of overestimation by BORC = s2M for s ∈ {1, 2, 4, 8}. That
is, when s = 1 exactly the necessary number of queries are used and when s > 1 more
queries are used than actually needed.

The estimate can in practice be independent of the audio recording and set as a bound on
M. E.g., if we never expect to encounter more than Mmax sound events in a recording of
length T we set BORC = 2Mmax. But, it could also depend on the audio recording and be
an estimate of the number of events that occur. In this analysis we assume that it is unlikely
to overestimate the number of events by more than a factor of 8.
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Figure 11: The relative cost of FIX and ORC for varying: annotator criteria γ (left), and cost ratios r (right). The default parameters
are: T = 100, r = 0.5,M = 1 and γ = 0.5. We simulate overestimating the number of needed queries BORC = s2M
by a factor of s for s ∈ {1, 2, 4, 8} to see how this affect the relative cost. The cost of FIX is greater than the cost of
ORC above the dashed red line where the cost ratio is 1.

The relative cost we study becomes

CFIX

CORC
=

C(T,B(max)
FIX )

C(T,BORC)
. (7.4)

In figure 11 we plot the relative cost for different: annotator criteria (γ ∈ [0.1, 1]), and
cost models (r ∈ [0, 1]) and in figure 12 for different number of sound events (M ∈
{1, 2, . . . , 100}), and audio recordings lengths (T ∈ [1, 100]). We change one of these
parameters at a time, and the default values are: T = 100, r = 0.5, γ = 0.5, and
M = 1. The default setting simulates the cost of annotating a 100 second audio record-
ing (T = 100), where the cost of listening to a second of audio and handling a query is
the same (r = 0.5), the annotator need to hear at least 50% of the sound event to detect
presence (γ = 0.5), and there is one sound event in the recording (M = 1).

We know from the previous section that the only way to achieve an expected QIoU of 1
with FIX is when γ → 0, then B(max)

FIX → ∞, and CFIX/CORC → ∞. That is, we need to
pay an infinite cost to achieve an expected QIoU of 1 with FIX, but only a finite cost with
ORC.

We see this in the left panel of figure 11, where the ratio increases drastically as γ → 0.1.
We limit γ to 0.1 because otherwise we get so large values that the lines become indistin-
guishable. We can see that in the default setting, it does not matter what γ we choose for
the annotator, the cost of the ORC method is strictly less than the cost of FIX. But for
large γ the cost becomes more similar. What this tells us in combination with theorem 3
is that FIX can give similar expected QIoU as ORC but at a much higher cost, and that it
can have as low cost as ORC but with a much lower expected QIoU.
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Figure 12: The relative cost of FIX and ORC for varying: number of sound events M (left) and recording lengths T (right). The
default parameters are: T = 100, r = 0.5, M = 1 and γ = 0.5. We simulate overestimating the number of needed
queries BORC = s2M by a factor of s for s ∈ {1, 2, 4, 8} to see how this affects the relative cost. The cost of FIX is
greater than the cost of ORC above the dashed red line where the cost ratio is 1.

In practice a γ that is close to 0 is not only infeasible because of the large associated cost,
it is also not a realistic assumption about the annotator. This would require the annotator
to be able to detect event presence at the smallest possible time scale, i.e., from an audio
sample alone.

In the right panel of figure 11 we see that it does not matter which r we choose for the
cost model, the cost of ORC is strictly less than the cost of FIX in the default setting for
different r.

In the left panel of figure 12 we can see that the number of events in the recording do affect
the cost ratio. When s = 1 we can see that when no more than 60 events are in the audio
recording then ORC is less costly than FIX. In the other extreme, when s = 8, FIX is less
costly when at least roughly 10 events are present. That is, the number of events that occur
in the recording determine when the ORC method is more costly than FIX.

In the right panel of figure 12 we observe a similar thing. But now the length of the recording
changes instead of the number of events. When the recording is short (high event density)
we no longer see a cost benefit of using ORC.

However, remember that the highest achievable expected QIoU when γ = 0.5 (default
setting in these experiments) is Pmax(0.5) ≈ 0.382, and here we compare to ORC which
will have an expected QIoU of 1.0, so the additional cost incurred by ORC may be merited
in some of these settings because of the much higher label quality.
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8 Discussion

Some form of FIX labeling has been employed in many works. Theorem 2 can be used as a
rule of thumb to choose the best segmentation length for a given event length. The results
suggest that in most cases knowing the average event length is enough to get a sufficiently
good estimate, but knowing the approximate distribution of event lengths is even better.

Extending the theory to more dimensions. In this paper we have only derived this theory
for annotation of data measured along 1 dimension, i.e., sound event annotation. However,
with slight adjustments a more general theoretical framework covering up to 3 dimensions
should be feasible to derive, which would also cover FIX labeling of rectangles in e.g.,
images or FIX labeling of cubes in e.g, point clouds.

Multiple different presence classes. If there arem presence classes to annotate and the same
annotator criterion γ holds for each of them then theorem 1 is applicable for the joint event
length distribution of the different classes. Simply perform the same numerical integration
with the joint event length distribution (if it can be estimated) as done in section 7.1. Of
course, in reality different annotation criteria γ can be expected for different event classes
(and in general different models entirely), in which case a more elaborate framework needs
to be developed. Empirical studies that try to understand the properties of real annotators
to understand how to best model them would be very beneficial.

Pmax(γ) can be considered as an upper bound. The expression for the expected QIoU is
derived for, arguably, the simplest sound event distribution to annotate, when there is only
one event with a deterministic event length present. We can see in all of the results that
Pmax(γ) is higher than or equal to all the simulated (and numerically integrated) average
QIoU for all of the more complex sound event distributions considered. Supporting the
claim that this can be treated as an upper bound. A proof that shows that adding more
events or introducing event length variability can only lead to a harder distribution to an-
notate has however not been given in this paper.

Better understand the properties of a SED model trained with FIX labels. We can use
theorem 3 to understand the properties of the best performing model when the evaluation
set contains FIX labels. For example, we now know that for γ = 0.5 the annotations will
at most have an expected QIoU of Pmax(0.5) ≈ 0.38 When evaluating a model with these
labels the best performing SED model will therefore not be the one that solves the task
perfectly, but a model that predict the onsets and offsets that match that of FIX labeling,
which we now know would contain a large fraction of absence sound. We may end up
rejecting the model that does what we really want simply because our evaluation criteria
is insufficient. That is, if our objective is a model that does not have these properties we
may have to consider other annotators (smaller γ) at an increased cost, or other ways of
annotating at least the evaluation data.
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Better understand properties of segment based evaluation criterias. The theory can be
relevant for some evaluation procedures of sound event detection methods. A common
way to evaluate models is to use a segment-based F1 score [25], which in principle is similar
to the FIX labeling. The audio recording is divided into fixed length segments, and the
segments are given a label according to the overlap with ground truth labels. A difference
is that since in evaluation we know the ground truth we basically have γ → 0. Therefore,
the expected QIoU becomes P(de, dq, 0) = de/(de + dq), which tells us that the metric
will accept a fraction of 1 − de/(de + dq) absence sound in the presence annotations and
still consider them as positives. Of course choosing the segment length dq → 0 will make
1− de/(de + dq)→ 0. However, even for evaluation this choice is associated with an cost.
The theory may be used to make sure that the accepted fraction of absence sound in the
presence labels is satisfactory for the application at hand.

The annotator criterion γ depends on the interface for the annotator. Let us assume that
the annotator has an interface which displays other information such as the spectrogram
of the sound recording, and which lets the annotator click on the query segments to label
presence of an event (similar to figure 1). There is almost no cost associated with looking
at a spectrogram of a sound recording, if it is reasonably small. If the annotator can detect
event presence based on the spectrogram, this could effectively be considered as a very small
γ. The length of the query segments may not really matter for detecting presence in this
setting, because the presence is detected at a recording level. But, they do still affect the
resulting QIoU. But the cost of dq → 0 would be infinitely many clicks since the annotator
still need to click on all the segments that contain the event. While the annotator criterion
may be less applicable in these cases where presence is detected on a recording level, the
theory still give a bound on the expected QIoU and the cost associated with that.

9 Conclusions

The results show a large gap between FIX and ORC in both the cost of annotation and
the resulting expected label quality, a gap that could be reduced by developing annotation
methods that better model ORC.
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1 Appendix

1.1 Proof of theorem 1

Proof. From figure 2 we note that we can divide the integral in Eq 4.4 into five different
regions:

1. F(et, q, γ) = 0 when t ∈ [t0, t1],

2. F(et, q, γ) = f(et, q) when t ∈ [t1, t2] (light blue),
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3. F(et, q, γ) = fmax when t ∈ [t2, t3] (dark blue),

4. F(et, q, γ) = f(et, q) when t ∈ [t3, t4] (light blue), and

5. F(et, q, γ) = 0 when t ∈ [t4, t5].

The area under the curve for (1) and (5) is 0, and for (2) and (4) it is the light blue area
in figure 2 which are by symmetry equal, and the area under (3) is the dark blue area in
figure 2, which means that Eq. 4.4 can be written as

P(e, q, γ) =
1

de + dq

[
2
∫ t2

t1
f(et, q)dt+

∫ t3

t2
fmaxdt

]
. (1.1)

The QIoU f(et, q) is defined in Eq 4.2, and now we only need to define t0, . . . , t3, fmin, fmax
as functions of e, q and γ to compute Eq 1.1. We will do this with the help of figure 2 and
figure 13.

In figure 13 we can see the states t0, . . . , t3 illustrated. The initial state t = t0 is when the
event et aligns with the query q which happens at t0 = 0.

Figure 13: An illustration of how the sound event et and the query segment q overlap at the four distinct states at times t =
t0, . . . , t3 (see figure 2). (For brevity we do not show state t4 which is symmetrical to t1 and t5 which is symmetrical
to t0.)

State t = t1. The shift we see at t1 in figure 2 is when F(e, q, γ) goes from being 0 to
f(et, q), i.e., the time t where there is enough overlap between the sound event and the
query segment for the annotator criterion to be minimally fulfilled. This happens when
h(et, q) = γ which by Eq. 3.1 means that |et1 ∩ q| = γde and therefore we know that
t1 − t0 = γde (see t = t1 in figure 13).

State t = t2. The shift we see at t2 in figure 2 is where the maximum QIoU fmax is achieved
for the first time. The time t2 when this happens and the value fmax depends on whether
the event length is long enough to cover the entire query or not. We therefore need to
consider case (i) when de ≥ dq and case (ii) when de < dq. If de ≥ dq then fmax is achieved
when the end of the sound event aligns with the end of the query which happens when the
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sound event has moved the whole length of the query at t(i)2 = dq (see t = t2 case (i) in
figure 13) and thus t(i)2 − t(i)1 = dq − γde = α(i). If de < dq then fmax is achieved when the
beginning of the sound event aligns with the beginning of the query (see t = t2 case (ii) in
figure 13) which happens when the sound event has moved the whole length of the sound
event t(ii)2 = de and thus t(ii)2 − t(ii)1 = de − γde = α(ii).

State t = t3. This shift we see at t3 in figure 2 is when fmax is achieved for the last time.
Again we need to consider the two cases, and in case (i) this happens after the event has
moved the whole event length at t(i)3 = de, and in case (ii) this happens when the event has
moved the whole query length at t(ii)3 = dq. We can therefore write t(i)3 − t(i)2 = de − dq =
β(i) for case (i), and t(ii)3 − t(ii)2 = dq − de = β(ii) for case (ii).

For convenience we introduce the helper variables

α =

{
α(i), if de ≥ dq, and
α(ii), if de < dq,

(1.2)

β =

{
β(i), if de ≥ dq, and
β(ii), if de < dq,

(1.3)

to hide the dependence on the cases for now and define t0 = 0, t1 = deγ, t2 = t1 +α, and
t3 = t2 + β. Finally we note that

fmax =

{
1, if de ≥ dq,
de
dq , if de < dq,

(1.4)

since F(et, q, γ) = 1 for t ∈ [t2, t3] in case (i), and otherwise F(et, q, γ) = de
dq since |q∩et| =

de between t3 and t4, and that

fmin =
γde
dq
, (1.5)

which is always the QIoU when Eq 3.2 is minimally fulfilled.

We can now compute each part of Eq 1.1 separately. We start by observing that f(et, q) is
a linear function between t = t1 and t = t2 going from fmin to fmax, which means that we
can compute ∫ t2

t1
f(et, q)dt =

∫ α

0
f(et+t1 , q)dt, (1.6)

=
α(fmin + fmax)

2
, (1.7)
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since t2 − t1 = α by definition. The other integral is over fmax between t2 and t3 where
t3 − t2 = β by definition which give∫ t3

t2
fmaxdt =

∫ β

0
fmaxdt (1.8)

= βfmax (1.9)

Finally we get

P(e, q, γ) =
1

de + dq
[α(fmin + fmax) + βfmax] , (1.10)

which is the expected QIoU of queries of event length dq for sound events of length de
when the annotator criterion is γ. With a slight abuse of notation we will use P(e, q, γ) =
P(de, dq, γ) since the resulting expression in Eq 1.10 is only a function of de, dq and γ.

Next we consider case (i) and case (i) separately by substituting the convenience variables
α, β, fmin, and fmax for the actual values in each case (i) and (ii).

Case (i). de ≥ dq.

P(de, dq, γ) =
1

de + dq

[
2αγde + α2

dq
+ βfmax

]
(1.11)

=
1

de + dq

[
2(dq − γde)γde + (dq − γde)2

dq
+ (de − dq)

]
(1.12)

=
1

de + dq

[
de −

d2
e γ

2

dq

]
(1.13)

Case (ii). de < dq.

P(de, dq, γ) =
1

de + dq

[
2αγde + α2

dq
+ βfmax

]
(1.14)

=
1

de + dq

[
2(de − γde)γde + (de − γde)2

dq
+ (dq − de)

de
dq

]
(1.15)

=
1

de + dq

[
de −

d2
e γ

2

dq

]
(1.16)

Since both cases yield the same expression we can simply describe the expected QIoU as

P(de, dq, γ) =
1

de + dq

[
de −

d2
e γ

2

dq

]
(1.17)
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which thus describes the expected QIoU of an annotator with annotator criterion γ for an
arbitrary query q and a sound event et placed uniformly at random at time t ∈ [0,T− de].
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From weak to strong sound event labels using adaptive change-point
detection and active learning
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Abstract

We propose an adaptive change point detection method (A-CPD) for machine guided
weak label annotation of audio recording segments. The goal is to maximize the
amount of information gained about the temporal activations of the target sounds.
For each unlabeled audio recording, we use a prediction model to derive a probabil-
ity curve used to guide annotation. The prediction model is initially pre-trained on
available annotated sound event data with classes that are disjoint from the classes in
the unlabeled dataset. The prediction model then gradually adapts to the annotations
provided by the annotator in an active learning loop. We derive query segments to
guide the weak label annotator towards strong labels, using change point detection
on these probabilities. We show that it is possible to derive strong labels of high qual-
ity with a limited annotation budget, and show favorable results for A-CPD when
compared to two baseline query segment strategies.

Proceedings: In proceedings of the 32nd European Signal Processing Conference
(EUSIPCO), Lyon, France, 2024. (Nominated for best student paper.)

Keywords: Active learning, annotation, sound event detection, deep learning
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1 Introduction

Most audio datasets today consists of weakly labeled data with imprecise timing informa-
tion [1], and there is a need for efficient and reliable annotation processes to acquire labels
with precise timing information. We refer to such labels as strong labels. The performance
of sound event detection (SED) models improve with strong labels [2], and strong labels
become especially important when we want to count the number of occurrences of an
event class. For example in bioacoustics, where counting the number of vocalizations of an
animal species can be used to estimate population density and draw ecological insights [3].

Crowdsourcing the strong labels is challenging and an attractive solution is to crowdsource
weak labels to enable reconstruction of the strong labels [4, 5]. Asking the annotator for
strong labels requires more work and it can in the worst case lead to the annotator misun-
derstanding the task [5].

Disagreement-based active learning is the most used form of active learning for sound event
detection [6, 7, 8, 9], focusing on selecting what audio segment to label next. The recordings
are either split into equal length audio segments [6, 7, 9] or segments depending on the
structure of the sound [8]. Each segment is then given a weak label by the annotator.

We use a weak label annotator to derive strong labels as in [5], but instead of using fixed
length query segments we adapt the query segments to the data, in the setting of active
learning. We propose an adaptive change point detection (A-CPD) method which splits a
given audio recording into a set of audio segments, or queries. The queries are then labeled
by the annotator and the strong labels are derived and evaluated.

See Fig. 1 for an illustration where a set of seven queries are used either optimally or sub-
optimally for a given audio recording with three sound events. We assume three sound
events to be detected in each audio recording as a simplification during method develop-
ment. We aim to adapt the set of queries in such a way that the information about the
temporal activations of the target sounds is maximized. Note that we aim to actively guide
the annotator during the annotation of the audio recordings, rather than actively choose
which audio recordings to annotate which is typically done in active learning.
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Figure 1: Illustration of segmentation of an audio spectrogram with three target events shown in shaded green (top panel) into
a set of audio query segments q0, . . . , q6 using an optimal method w.r.t the derived strong label timings (middle panel)
and a sub-optimal method (bottom panel). Resulting annotations, from the weak labels given by the annotator, are
shown in shaded red for both methods. Query q4 for the optimal method is omitted for clarity.

2 Sound event annotation using active learning

We consider SED tasks where the goal is to predict the presence of a given target event
class. The results can also be generalized into the multi-class setting. Given a restricted
annotation budget and no initial labels we aim to derive strong labels using active learning
to train a SED system. To this end, we propose the following machine guided annotation
process.

Let D(k)
L denote the set of labeled audio recordings and D(k)

U the set of unlabeled audio
recordings at active learning iteration k. Further, letA(k) = {(s(j)i , e

(j)
i , c

(j)
i )}Bi=1

k
j=1 denote

the annotations of segments, where s denotes the onset, e the offset, and c ∈ {0, 1}, the
weak label for each segment i of the B annotated segments in audio recording j.

We start without any labels, A(0) = D(0)
L = , and all audio recordings are unlabeled,

D(0)
U = {xj}Nj=1, where xj ∈ RT denotes an audio recording of length T, and N denotes

the total number of audio recordings. We then loop for each k ∈ {1, . . . ,N} and:

1. choose a random unlabeled audio recording x from D(k−1)
U ,

2. derive a set of B audio query segments Q = {qi}B−1
i=0 using a query strategy where

qi = (si, ei) consists of the start si and end ei timings for query i,

3. send the queries to the annotator (returning a weak label for each query) and add
the annotations to the set of segment labels A(k) = A(k−1) ∪ {(si, ei, ci)}Bi=1,

63



4. In case of A-CPD: use the annotations {(si, ei, ci)}Bi=1 to update the query strategy,
and

5. update the labeled recording set D(k)
L by adding x and the unlabeled recording set

D(k)
U by removing x.

For brevity we have omitted the dependence on k for xrk and (s(rk)i , e(rk)i , c(rk)i ) in the de-
scription of the annotation loop, where rk ∈ {1, . . . ,N} would denote the randomly
sampled audio recording for iteration k. After the annotation loop all N audio recordings
have been annotated exactly once with the query method used in step (2), resulting in a set
of annotations A(N) = {(s(j)i , e

(j)
i , c

(j)
i )}Bi=1

N
j=1.

Note that B is not the number of sound events in the recording, but the number of query
segments allowed when annotating the recording. The smallest number of query segments
to derive the ground truth strong labels does, however, depend on the number of sound
events M in the recording as 2M + 1 (see Section 3.4). A-CPD is developed to provide
strong labels using as few as B = 2M+ 1 queries.

The total annotation budget used will scale with both N and B. Typically we would aim
to reduce N by actively sampling the data points to annotate, but we instead aim to reduce
B. Think of B as a part of the annotation cost of an audio recording, which can be reduced
with maintained label strength by guiding the annotator during the annotation process.

3 Query strategies

In this section we describe the studied query strategies.

3.1 The adaptive change point detection strategy (A-CPD)

To produce a set of queries for a given audio recording x at annotation round k we perform
three key steps:

1. update a prediction model using the annotations from round k− 1 (initialized with
pre-training if k = 0),

2. predict probabilities indicating the presence of the target class in the recording using
the model, and

3. apply change point detection to the probabilities to derive the queries.
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Figure 2: Qualitative example of how the different query strategies A-CPD, F-CPD and FIX segment a spectrogram of an audio
recording with three target events shown in shaded green (top panel) into B = 7 queries. A-CPD (second panel) uses
change point detection (blue line) on the probability curve from a prediction model (orange line) to detect the B − 1
most prominent peaks (red crosses) which are used to construct a set of queries {q0, . . . , qB−1} (dashed red lines).
Each query qi = (si, ei) is given a weak label ci ∈ {0, 1} (c = 1 shown as shaded red), resulting in the i:th annotation
(si, ei, ci). F-CPD (third panel) uses change point detection directly on the cosine distances in embedding space (blue
line) and thereafter constructs queries in the same way as A-CPD. FIX (fourth panel) uses fixed length queries.

The pre-training of the prediction model can be done in a supervised or unsupervised way.
The important property is that the model reacts to changes in the audio recording related
to the presence or absence of the target class. However, it is not strictly necessary that the
model reacts only to those changes.

Let hk : RL → [0, 1] denote a model that predicts the probability of an audio segment of
length L belonging to the target event class. In principle, any prediction model can be used.
For a given audio recording x the prediction model hk(·) is applied to consecutive audio
segments to derive a probability curve, shown as the orange curve for A-CPD in Fig. 2. The
consecutive audio segments are derived using a moving window of L seconds with hop size
L/4.

We define the Euclidean distance between two points t − α and t + α on the probability
curve as:

g(k)A-CPD(t) = ||hk(t− α)− hk(t+ α)||, (3.1)

shown as the blue curve for A-CPD in Fig. 2. The previous probability is compared with
the next probability in Eq. 3.1, and α = L/4 (hop size) is therefore chosen to ensure a 50%
overlap between the audio segments for these probabilities.

Let t be a local optimum of g(k)A-CPD(t), and all such local optima are called peaks. We
rank peaks based on prominence. For any given peak t, let tl and tr denote the closest local
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minima of gk(·) to the left and right of t. The prominence of the peak at t is defined as
|gk(t)−max(gk(tl), gk(tr))|. Let TA-CPD = {t1, t2, . . . , tB−1} be the B−1 most prominent
peaks of a given audio recording such that t1 ≤ t2 ≤ · · · ≤ tB−1, shown as red crosses in
Fig. 2. The A-CPD query method is then defined as:

Q(k)
A-CPD = {(0, t1), (t1, t2), . . . , (tB−1,T)}, (3.2)

which are shown as dashed red lines in Fig. 2, where T is the length of the audio recording
and B is the number of queries used. Note that g(k)A-CPD(t) will gradually become more
sensitive towards changes between presence and absence of the target class in the recording
with additional annotations, and become less sensitive to other unrelated changes.

3.2 The fixed change point detection strategy (F-CPD)

The fixed change point detection (F-CPD) method used as a reference derives the queries
by computing the cosine distance between the previous embedding at time t − α and the
next embedding at time t+ α:

gF-CPD(t) = 1− et−α · et+α

||et−α||||et+α||
, (3.3)

where et = fθ(xt) denotes the embedding of consecutive audio segments xt centered at
second t using the embedding function fθ : RL → RK. The cosine distance curve for an
audio recording is shown as the blue line for F-CPD in Fig. 2. This method is similar to [8]
except that embeddings are derived for 1.0 seconds of audio instead of 0.02. We therefore
directly compare the previous and next embeddings instead of a moving average as in [8].

The most prominent peaks in the cosine distance curve is then selected,
TFIX = {t1, t2, . . . , tB−1}, and the set of queries are defined as in Eq. 3.2, shown as dashed
red lines for F-CPD in Fig 2.

3.3 The fixed length strategy (FIX)

In the fixed length query strategy (FIX) audio is split into equal length segments and then
labeled. Let d = T/B, then the queries are defined as

QFIX = {(0d, 1d), (1d, 2d), . . . , ((B− 1)d,Bd)}, (3.4)

shown as dashed red lines for FIX in Fig 2. This is the setting most previous active learning
work for SED consider.
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3.4 The oracle strategy (ORC)

The oracle query strategy constructs the queries based on the ground truth presence and
absence annotations

QORC = {(s0, e0), (s1, e1), . . . , (sBsuff−1, eBsuff−1)}, (3.5)

where (si, ei) is the onset and offset for segment i where the target event is either present or
not. Bsuff is the sufficient number of queries to get the true strong labels, which relate to
the number of target events M in the given audio recording by Bsuff = 2M + 1. ORC is
undefined for B < Bsuff.

3.5 The role of query strategies in the annotation process

The query strategies described in this section are then used in step (2) of the annotation loop
described in Section 2. Note that when the queries are not adapted to the audio recording
multiple events can end up being counted as one. In Fig. 2 we can see this for F-CPD
where q3 and q4 are directly adjacent, meaning that they are not resolved as two separate
events, and for FIX where q3, q4 and q5 are all directly adjacent. A-CPD often resolves all
three events. Fig 2 is a qualitative example of all three methods, and quantitative results to
further support this claim are provided later in table 1.

The FIX length query segments depend on the query timings and target event timings
aligning by chance since the query construction is independent of the target events. The
A-CPD method aim to create query segments that are aligned with the target events by
construction. In addition, the number of queries needed to derive the strong labels scale
with the number of target events in the recording for A-CPD, which can be beneficial.

4 Evaluation

4.1 Datasets

We create three SED datasets for evaluation, each with a different target event class: Meerkat,
Dog or Baby cry. The Meerkat sounds are from the DCASE 2023 few-shot bioacoustic SED
dataset [10] and the Dog and Baby cry sounds from the NIGENS dataset [11]. The sounds
used for absence of an event are from the 15 background types in the TUT Rare sound
events dataset [12].

The audio recordings in each dataset are created by randomly selecting M = 3 sound
events from that event class and mixing them together with a randomly selected background
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recording of length T = 30 seconds. In this way we know that exactly Bsuff = 2M+1 = 7
queries are sufficient and necessary to derive the ground truth strong labels using a weak label
annotator. The mixing is done using Scaper [13] at an SNR of 0 dB. In total we generate
N = 300 audio recordings using this procedure for each event class as training data and
equally many as test data.

The source files used in the mixing uses the supplied splits in [11] and [12], except for the
Meerkat sounds where non exist and the split is done on a recording level.

4.2 Evaluation metrics

We evaluate the methods by annotating the mixed training datasets using the query strate-
gies described in Section 2 and the annotation loop described in Section 3. The quality of
the annotations are then measured in two ways: (i) how strong the annotations are com-
pared to the ground truth, and (ii) the test time performance of two evaluation models
trained using the different annotations.

The evaluation metrics used in case (i) and (ii) are event-based F1-score (F1e) and segment-
based F1-score (F1s) [14]. The segment size for F1s is set to 0.05 seconds, and the collar
for F1e is set to 0.5 seconds. In case (i) the F1s measures how much of the audio that has
been correctly labeled and in case (ii) F1s measures how much of the audio that has been
correctly predicted by the evaluation model. The F1e score is only used to measure how
close the annotations are to the ground truth labels in the training data.

Annotator model Let A(j)
gt = {(si, ei, c = 1)}3i=1 denote the set of ground truth target

event labels for audio recording j, where si is the onset, ei the offset and c = 1 indicate the
presence of the target event.

We use A(j)
gt to simulate an annotator for recording j. For a given query segment we check

the overlap ratio with the ground truth target event labels. Formally, if there exists an
annotation (si, ei, ci = 1) s.t.

(si, ei) ∩ (sq, eq)
|si − ei|

≥ γ, (4.1)

holds for the given query segment q = (sq, eq), then the annotator returns ci = 1 for query
q, and ci = 0 otherwise. Annotation noise is added by flipping the returned label with
probability β. In this work γ = 0.5, and β ∈ {0.0, 0.2}.
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4.3 Implementation details and experiment setup

Prediction model The prediction model hk(·) is modeled using a prototypical neural net-
work (ProtoNet) [15]. The prototypes are easily updated at each annotation round k using
a running average between each previous prototype and the newly labeled audio embed-
dings. We model the embedding function fθ(·) using BirdNET [16], a convolutional neural
network pre-trained on large amounts of bird sounds.

Evaluation models We use two models to evaluate the test time performance of models
trained on the annotations obtained using each query strategy: a two layer multilayer per-
ceptron (MLP) and a ProtoNet. The MLP is trained using the Adam optimizer and cross-
entropy loss. Each query strategy is run 10 times and the evaluation models are trained
on the embeddings using the resulting labeled datasets. ProtoNet is used in two ways: as a
prediction model in the proposed A-CPD method, and as an evaluation model.

4.4 Results

In Table 1 we show the average F1s-score and F1e-score for the training data annotations over
10 runs for each dataset and with the sufficient nu B = Bsuff = 7. The A-CPD method
outperforms the other methods for all studied target event classes. The standard deviation is
in all cases less than 0.03 (omitted from table for brevity), and the baseline query strategies
are deterministic when β = 0.

Table 1: Average F1s-score and F1e-score for the training annotations for each annotation process and target event class with
β = 0

Strategy Meerkat Dog Baby
F1s F1e F1s F1e F1s F1e

ORC 1.00 1.00 1.00 1.00 1.00 1.00
A-CPD 0.31 0.57 0.29 0.45 0.62 0.60
F-CPD 0.16 0.44 0.21 0.30 0.48 0.45

FIX 0.11 0.00 0.19 0.00 0.41 0.01

In Fig. 3 we show the average F1s-score over all runs and event classes for the annotations
derived from each query strategy. The proposed A-CPD method has a strictly higher F1s-
score than the FIX and F-CPD baselines for all budgets and noise settings. We also see
that there is still a significant gap to the ORC strategy. The noisy annotator (β = 0.2)
drastically reduce the label quality for all studied strategies, especially ORC dropping from
an F1s-score of 1.0 (omitted from figure) to ≈ 0.28 (large drop due to class-imbalance).
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Figure 3: The average F1s-score over the three classes for each of the studied annotation processes plotted against the number
of queries per audio recording, B. The results are shown for an annotator without noise (left) and with β = 0.2 (right).
Note that ORC is 1.0 when β = 0 and is therefore not shown in the left figure. Shaded region where B ≥ Bsuff.

In Fig. 4 we show the average test time F1s-score of a ProtoNet (top) and a MLP (bottom)
trained using the annotations from each of the studied annotation strategies and settings.
The A-CPD method outperforms the other methods when B ≥ 7. For the ProtoNet the
FIX method outperform A-CPD when B < 7 and for the MLP the results are similar.
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Figure 4: The average test time F1s-score over the studied sound classes for a ProtoNet (top) and the MLP (bottom) trained with
the annotations from each respective annotation process and setting. Shaded region where B ≥ Bsuff.

Table 2 and 3 show the average F1s-score and standard deviation for the three different
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event classes for all studied query strategies. The average is over 10 runs, and the number
of queries is set to B = 7. Table 2 shows the F1s-score for the ProtoNet evaluation model.
A-CPD achieves a higher F1s-score for the meerkat and baby datasets. On average A-CPD
outperforms the other methods as seen in Fig. 4. Table 3 shows the F1s-score for the MLP
evaluation model. A-CPD achieves a higher F1s-score for all studied datasets.

Table 2: Average test time F1s-score for ProtoNet with β = 0.

Strategy Meerkat Dog Baby
ORC 0.46 0.48 0.81

A-CPD 0.44 ± 0.00 0.20 ± 0.01 0.71 ± 0.02
F-CPD 0.31 0.19 0.66

FIX 0.34 0.25 0.68

Table 3: Average test time F1s-score for MLP with β = 0.

Strategy Meerkat Dog Baby
ORC 0.43 ± 0.00 0.51 ± 0.01 0.83 ± 0.00

A-CPD 0.44 ± 0.00 0.43 ± 0.02 0.81 ± 0.01
F-CPD 0.38 ± 0.01 0.42 ± 0.02 0.79 ± 0.01

FIX 0.33 ± 0.02 0.40 ± 0.02 0.75 ± 0.02

4.5 Discussion

The results in all tables are for the sufficient budget B = Bsuff = 2M+1. In practice we do
not know Bsuff. However, the A-CPD method is applicable also for an arbitrary number of
sound events in the recording when B is chosen sufficiently large. This choice need to be
made for all the studied methods. We show the benefit of A-CPD for differently chosen B
in Fig. 3. Estimating Bsuff based on the audio recording could further reduce the number
of queries used and is left as future work.

We chose γ = 0.5 in the annotator model since the annotator should be able to detect a
target event if more than 50% of the event occurs within the query segment. This choice is
however non-trivial, and depends on the expertise of the annotator and target class among
others. We observe similar results on average as those presented in the paper for γ ∈
{0.05, 0.25, 0.5, 0.75, 0.95} (not shown).

We use BirdNET [16] to model the embedding function since we study bioacoustic target
classes. However, an embedding function such as PANNs [17] may also be used if the target
classes are more general.
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5 Conclusions

We have presented a query strategy based on adaptive change point detection (A-CPD)
which derive strong labels of high quality from a weak label annotator in an active learning
setting. We show that A-CPD gives strictly stronger labels than all other studied base-
line query strategies for all studied budget constraints and annotator noise settings. We
also show that models trained using annotations from A-CPD tend to outperform models
trained with the weaker labels from the baselines at test time. We note that the gap to the
oracle method is still large, leaving room for improvements in future work.
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DMEL: the differentiable log-Mel spectrogram as a trainable layer
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Abstract

In this paper we present the differentiable log-Mel spectrogram (DMEL) for audio
classification. DMEL uses a Gaussian window, with a window length that can be
jointly optimized with the neural network. DMEL is used as the input layer in differ-
ent neural networks and evaluated on standard audio datasets. We show that DMEL
achieves a higher average test accuracy for sub-optimal initial choices of the window
length when compared to a baseline with a fixed window length. In addition, we
analyse the computational cost of DMEL and compare to a standard hyperparameter
search over different window lengths, showing favorable results for DMEL. Finally,
an empirical evaluation on a carefully designed dataset is performed to investigate if
the differentiable spectrogram actually learns the optimal window length. The design
of the dataset relies on the theory of spectrogram resolution. We also empirically
evaluate the convergence rate to the optimal window length.

Proceedings: ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
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Keywords: Deep learning, STFT, learnable Mel spectrogram, audio classification,
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1 Introduction

An increasing interest for using time-frequency images for feature extraction is seen in
classification of audio data, typically human speech, music, and bioacoustics recordings.
In audio classification, the spectrogram, the squared magnitude of the short-time Fourier
transform (STFT), is typically mapped onto the Mel-scale using a Mel-filterbank [1]. This
is called the Mel-spectrogram, which is then used as input to a neural network model.

The choice of Mel-filterbank affects the frequency resolution and additionally the choice
of window length of the STFT creates a trade-off between time- and frequency resolution.
Different trade-offs may be optimal for different audio classification tasks. Recent work has
proposed the differentiable STFT (DSTFT) [2, 3, 4] where the window length, and thereby
the time-frequency (TF) resolution, can be jointly optimized with the neural network. In
[2] the DSTFT is proposed using a 50% fixed-overlap STFT and a Gaussian window. In
[3] the constraint on the window function being Gaussian is relaxed, and a theory for
a family of differentiable STFTs is presented. In these methods, the number of frequency
bins is proportional to the window length, which can lead to high computational demands.
Evaluations on complex audio classification tasks is therefore limited.

Recent work on learnable Mel-spectrograms include learning the Mel-filterbank [5], the
energy normalization [6], and combinations of both [7, 8]. In this way, the feature extrac-
tion method can be optimized for the audio classification task at hand. Applications are
seen in speech processing [9, 10], bird acoustic classification [11], and underwater acoustic
classification [12].

In this work, we propose DMEL, the differentiable log-Mel spectrogram, which is an ex-
tension of DSTFT. DMEL is evaluated in a state-of-the-art convolutional neural network
(CNN) for audio classification on complex audio datasets. We analyse the computational
cost of DMEL and we also investigate the classification accuracy as well as the convergence
rate for a simplified case. This is a step towards closing the gap between the DSTFT and
the recent work using trainable filter-banks and normalization in the Mel-spectrogram for
audio classification.

2 DMEL: Differentiable log-Mel spectrogram

The spectrogram is defined as

Sx,λ(t, f) = |F(t, f)|2 =

= |
∫ ∞

−∞
x(s− t)h(s) exp(−i2πfs)ds|2 (2.1)
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where F(t, f) is the short-time Fourier transform (STFT) of the signal x(t) using a Gaussian
window

h(t) = exp(− t2

2λ2 ), (2.2)

with scaling parameter λ which controls the window length and thereby the TF resolution
of the spectrogram.

The STFT is differentiable with respect to the window parameter λ according to

dF(t, f)
dλ

=

∫ ∞

−∞
x(s− t)

dh(s)
dλ

exp(−i2πfs)ds, (2.3)

and a loss function L is differentiable w.r.t λ through gradient backpropagation using

dL
dλ

=

N∑
n=1

K−1∑
k=0

dL
dF(n, k)

dF(n, k)
dλ

, (2.4)

where F(t, f) is discretized to F(n, k) with a fixed number of N bins in time and K bins in
frequency [3]. Equations (2.1)-(2.4) define the differentiable spectrogram (DSPEC).

The model layer studied in this paper is the differentiable log-Mel spectrogram (DMEL),
which is a novel extension where a set of Mel-filters {ψm}Mm=1 are applied to DSPEC to
map it to the Mel-scale

Mx,λ(n,m) = log(
K−1∑
k=0

Sx,λ(n, k)ψm(k) + ϵ). (2.5)

The Mel-filters are defined as in [1] and ϵ = 1e−10 to avoid the logarithm of zero. The
log-Mel filterbank preserves the gradients during backpropagation giving a log-Mel spec-
trogram with a trainable window size. We also let

lλ = 1000 ∗ 6 ∗ λ/Fs, (2.6)

denote the window length in milliseconds (ms), where Fs is the sample rate, and the factor
1000 converts to ms.

3 Audio data experiments

In this section we present the models and data used to evaluate DMEL, and the experiment
setup. The results are then presented for each dataset and compared to the baseline. The
baseline is the same model, but using a log-Mel spectrogram with a fixed window length as
input layer instead of DMEL.
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Table 1: The PANNs 6 layer convolutional neural network (CNN6) architecture.

Model CNN6
Input DMEL / baseline, 64 Mel bins

Conv. layers


(3x3 @ 64, BN, ReLU) x 2
(3x3 @ 128, BN, ReLU) x 2
(3x3 @ 256, BN, ReLU) x 2
(3x3 @ 512, BN, ReLU) x 2

Global average pooling
FC 512, ReLU

Output FC 50, Sigmoid

3.1 Audio data and models

DMEL is evaluated together with a linear model called “LNet” consisting of a linear layer
followed by a softmax normalization, and a state-of-the-art convolutional neural network
called “CNN6” from the PANNs family [13] detailed in table 1. We set the number of
Mel-filters to M = 64 and the fixed hop length in the STFT is set to 10 ms. This imposes a
bound on the achievable TF resolution, but is necessary to make the optimization feasible.

We evaluate DMEL in these two models on the audio MNIST dataset (A-MNIST) [14]
and the ESC50 dataset [15]. The A-MNIST dataset consists in total of 30, 000 recordings
collected from 60 different people speaking the numbers 0 to 9. The ESC50 dataset consists
in total of 2, 000 recordings collected from 50 different environmental sound classes. All
audio recordings are downsampled to 8, 000 Hz.

3.2 Experiments and results

The models are trained using the Adam optimizer for 100 epochs and the model with
the lowest validation loss is chosen. The loss function is the standard cross-entropy loss.
The task is to predict the ground truth class given the audio recording. For A-MNIST
the recordings are split 60%/20%/20% into training/validation/test datasets and for the
ESC50 dataset the split is 70%/10%/20%. All parameter learning rates are 0.0001, except
for λ, which is 1. The “CNN6” model was designed using a window length of 35 ms
for general audio tasks [13], we therefore evaluate three different initial window lengths
lλinit ∈ {10, 35, 300} ms, to see if DMEL makes the model robust against this parameter
choice. We do this 10 times for each model and hyper parameter configuration.
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Table 2: Pairwise comparison between DMEL and the baseline for different lλinit on the ESC50 dataset.

Model lλinit lλest (min, max) Method Accuracy
CNN6 10 ms (25, 27) ms DMEL 87.3 ± 1.0
CNN6 10 ms — baseline 84.2 ± 1.2
CNN6 35 ms (31, 90) ms DMEL 86.1 ± 1.3
CNN6 35 ms — baseline 86.9 ± 0.7
CNN6 300 ms (117, 153) ms DMEL 85.8 ± 1.2
CNN6 300 ms — baseline 84.7 ± 1.1

In table 2 we present the average test accuracy for the “CNN6” model on the ESC50 dataset
when either using DMEL or the baseline as input layer to the model. The learned window
length, denoted lλest , is presented as min and max in the table. Note that the comparison
is done pairwise between DMEL and the baseline for different initial window lengths, and
that we do not expect DMEL to outperform the baseline when lλinit is already suitable
for the classification task. We use bold-face to indicate a significant difference. DMEL
outperforms the baseline for the (presumably) sub-optimal choices lλinit = 10 ms and
lλinit = 300 ms, and achieves similar results for lλinit = 35 ms (a typical choice for audio
data). As a reference, the accuracy of the PANNs “CNN14” model, using a 35 ms window,
is 83.3% when trained from scratch on ESC50 in the original paper [13].

Table 3: Pairwise comparison between DMEL and the baseline for different lλinit on the A-MNIST dataset.

Model lλinit lλest (min, max) Method Accuracy
LNet 10 ms (314, 442) ms DMEL 94.9 ± 1.0
LNet 10 ms — baseline 89.3 ± 1.0
LNet 35 ms (398, 484) ms DMEL 95.0 ± 0.8
LNet 35 ms — baseline 91.9 ± 1.2
LNet 300 ms (516, 608) ms DMEL 95.3 ± 0.6
LNet 300 ms — baseline 95.3 ± 0.8

In table 3 we present the average test accuracy for the “LNet” model on the A-MNIST
dataset for different initial window lengths. A high accuracy is achieved for surprisingly
large window lengths. DMEL learns this, achieving a high accuracy for all initial window
lengths, significantly outperforming the baseline for lλinit = 10 ms and lλinit = 35 ms.

The results show that DMEL makes the audio classification model more robust to the choice
of the initial window length, by adapting the window length to the task at hand. We note
that DMEL introduces redundancy in the TF image due to the constant hop length, and
in the following section we analyse the cost of DMEL.
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4 Computational cost analysis of DMEL

The complexity of a fast Fourier transform (FFT) is
O(L log L), where L = 6λ is the window size in samples. In the STFT, the FFT is ap-
plied N/c times, where N is signal length and c is hop size, which results in a TF image of
pixel-size n = MN/c. The computational complexity of a CNN is O(n).

As baseline, we choose c = L/2, avoiding redundant information in the TF image, and
we assume that a hyperparameter search is done linearly between 20 ms and 300 ms over
D different window sizes, thus n = 2MN/L where M = 64 is the number of Mel-bands.
Using the cost constant C1 for the FFT and the cost constant C2 for the CNN we can
derive the following computational cost expression for the baseline

Cbaseline = BC1

D∑
i=1

N log Li + BC2

D∑
i=1

2MN
Li

, (4.1)

where Li is the different window lengths of the hyperparameter search and B = |lλopt −
lλinit |/α, with α = 0.001, is the assumed steps needed until convergence to the optimal
window length lλopt = 35 ms. For DMEL we do not need to train D different models, but
need to set the hop size c = 80 (10 ms) to a constant, resulting in the cost expression

CDMEL = C1

B∑
i=1

NLi
c

log Li +
BC2MN

c
. (4.2)

The relation CDMEL/Cbaseline is independent ofN and is depicted for differentD in figure 1.
When the computational cost is dominated by the neural network, C2 ≫ C1, we see com-
putational benefits for growing D, e.g. we see that DMEL requires half the computational
cost compared to baseline for D ≈ 10. In the case when C1 ≫ C2, when the cost is domi-
nated by the FFT, we see the highest reduction for a short initial window in DMEL (blue
line).
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Figure 1: The computational cost quotient CDMEL/Cbaseline with respect to D, for two different lλinit , when C2 ≫ C1 (left; blue
and orange lines are overlapping) and C1 ≫ C2 (right).
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5 Evaluation of Classification Accuracy and Convergence Rate

To investigate classification accuracy, we present a synthetic dataset, for which the accuracy
should be directly dependent on the TF resolution, i.e. the window length. This is a
simplified analysis and we therefore use DSPEC instead of DMEL to search for the scaling
parameter. We will also verify the findings from a theoretical aspect and investigate how
the convergence rate depends on the initial window length.

5.1 Simulated dataset

The simulated dataset consists of three classes, class 1, a single Gaussian-pulse, class 2 and
3, with two pulses separated either in time or frequency, as exemplified in figure 2. A
Gaussian-pulse is defined as

g(n0, f0, σ) = A exp(−(n− n0)
2

2σ2 ) sin(2πf0n+ ϕ), (5.1)

where the parameters are chosen to give TF symmetry (σ = 6.4) and optimal TF separation
for an optimal window length (λ = 6.4), see section 5.3. Gaussian noise is added to all
signal classes and A, ϕ, n0 and f0 are chosen at random. Full parameter description is given
in source code (page 1). In total 5, 000 samples is used, with approximately 1/3 of each
class. Using N = 128 with hop size one and K = 256, the resulting TF images are of
square size N× K/2.
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Figure 2: Examples from the simulated Gaussian-pulse dataset.

5.2 Experiment and results

We evaluate “LNet” on this dataset using either DSPEC or a fixed window length baseline,
which is trained in the same way as the audio classification model, with the exception that
Stochastic Gradient Descent (SGD) is used.
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The λinit which on average give the highest test accuracy for both methods is λinit = σ =
6.4 (see table 4). DSPEC is able to learn a λest close to 6.4 for all λinit, significantly out-
performing the baseline for the sub-optimal choices.

Table 4: Pairwise comparison between DSPEC and the baseline for different lλinit on the Gaussian-pulse dataset.

Model λinit λest (min, max) Method Accuracy
LNet 1.3 (4.8, 5.6) DSPEC 98.5 ± 0.2
LNet 1.3 — baseline 95.5 ± 0.2
LNet 6.4 (5.3, 6.0) DSPEC 98.5 ± 0.2
LNet 6.4 — baseline 98.8 ± 0.3
LNet 31.9 (3.4, 6.5) DSPEC 98.0 ± 0.4
LNet 31.9 — baseline 94.9 ± 0.4

5.3 Theory on time-frequency resolution and symmetry

In this subsection we derive the parameter choices for optimal TF resolution and TF sym-
metry. The reasoning relies on that the resolution limit of two closely spaced Gaussian
functions is two times the actual Gaussian function scaling parameter, [16]. The window
is Gaussian with parameter λ and the signal is g(0, 0, σ), which can be generalized to any
n0, f0 due to TF shift invariance [17]. The resulting discretized spectrogram is

Sx(n, k) =
2λ2σ2π
λ2 + σ2 exp(−1

2
(
n
δt
)2 − 1

2
(
k
δf
)2), (5.2)

a two-dimensional Gaussian function with scaling parameters

δt =

√
λ2 + σ2

2
, δf =

K
2πλσ

√
λ2 + σ2

2
. (5.3)

Minimizing δt and δf will result in optimal TF resolution. The corresponding TF cross-
section area is A = πδtδf with derivative as

dA
dλ

=
Kσ
4
(

1
σ2 −

1
λ2 ), (5.4)

giving λopt = σ and Amin = K/2 = 128. Optimal TF resolution is therefore given using a
matched window [17]. For TF symmetry (equal number of bins in time- and frequency) we
also set δt = δf in (11), and we find for the matched window case, λopt = σ =

√
K/(2π) =

6.4.

5.4 Convergence rate

Relying on TF symmetry we perform an experiment on the difference in convergence rate
for λ when approaching the optimal solution from a small initial value, or a large initial
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Table 5: Convergence rate experiment

λinit 1.3 31.9
Iterations 75.5 ± 1.3 186.0 ± 37.8

value of λ. We compute the optimally concentrated spectrogram for a Gaussian-pulse
signal and use this as the ground truth (see leftmost image in figure 2). The task is to learn
this spectrogram (i.e., the true value λopt) using DSPEC with SGD and a mean-squared
error (MSE) loss. The MSE loss is between the estimated spectrogram and the ground
truth. We study two carefully chosen values for λinit. Both give exactly the same cross-
section area A and therefore also the same initial MSE loss. We then measure the number
of SGD iterations until |λest − λopt| < 0.1, and present the average number of iterations
until convergence over 50 signals in table 5. The convergence rate is twice as fast when
λinit is chosen as the value smaller than λopt. Faster convergence means a smaller B in (4.2),
leading to further reduction in computational cost.

6 Conclusions

We introduce DMEL: a differentiable log-Mel spectrogram for audio classification, allow-
ing joint optimization of the window length and the neural network. DMEL achieves a
higher test accuracy on average than the baseline with a fixed window length for all non-
optimal initial window lengths on all evaluated datasets. In addition, we show that DMEL
leads to a reduced computational cost compared to a standard hyperparameter search over
different window lengths, especially if the initial window length is short. An empirical eval-
uation shows that the differentiable spectrogram is able to learn the optimal window length
on a carefully designed classification task. Finally, a convergence rate experiment indicates
that a shorter window is beneficial for fast convergence. The overall results suggest that it
is favorable to initialize the DMEL with a short window, resulting in lower computational
cost and faster convergence.

References

[1] Malcolm Slaney. Auditory toolbox. Technical report, Interval Research Corporation,
1998.

[2] An Zhao, Krishna Subramani, and Paris Smaragdis. Optimizing short-time Fourier
transform parameters via gradient descent. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, 2021-June(2):736–740, 2021. ISSN
15206149. doi: 10.1109/ICASSP39728.2021.9413704.

85



[3] Maxime Leiber, Axel Barrau, Yosra Marnissi, and Dany Abboud. A differentiable
short-time Fourier transform with respect to the window length. In 2022 30th Euro-
pean Signal Processing Conference (EUSIPCO), pages 1392–1396, 2022. doi: 10.23919/
EUSIPCO55093.2022.9909963.

[4] Maxime Leiber, Yosra Marnissi, Axel Barrau, and Mohammed El Badaoui. Differen-
tiable Adaptive Short-Time Fourier Transform with Respect to the Window Length.
In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5, 2023. doi: 10.1109/ICASSP49357.2023.10095245.

[5] Neil Zeghidour, Nicolas Usunier, Iasonas Kokkinos, Thomas Schaiz, Gabriel Syn-
naeve, and Emmanuel Dupoux. Learning Filterbanks from Raw Speech for Phone
Recognition. ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, 2018-April:5509–5513, 2018. ISSN 15206149. doi: 10.1109/
ICASSP.2018.8462015.

[6] Yuxuan Wang, Pascal Getreuer, Thad Hughes, Richard F. Lyon, and Rif A. Saurous.
Trainable frontend for robust and far-field keyword spotting. ICASSP, IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing - Proceedings, (1):5670–5674,
2017. ISSN 15206149. doi: 10.1109/ICASSP.2017.7953242.

[7] Neil Zeghidour, Olivier Teboul, Félix de Chaumont Quitry, and Marco Tagliasacchi.
LEAF: A Learnable Frontend for Audio Classification. In ICLR, International Confer-
ence on Learning Representations, pages 1–16, 2021. URL http://arxiv.org/abs/
2101.08596.

[8] Jan Schlüter and Gerald Gutenbrunner. EfficientLEAF: A Faster LEarnable Audio
Frontend of Questionable Use. European Signal Processing Conference, 2022-Augus:
205–208, 2022. ISSN 22195491.

[9] Miguel Arjona Ramirez, Wesley Beccaro, Demostenes Zegarra Rodriguez, and Re-
nata Lopes Rosa. Differentiable Measures for Speech Spectral Modeling. IEEE Access,
10:17609–17618, 2022. ISSN 21693536. doi: 10.1109/ACCESS.2022.3150728.

[10] Quchen Fu, Zhongwei Teng, Jules White, Maria E. Powell, and Douglas C. Schmidt.
Fastaudio: a Learnable Audio Front-End for Spoof Speech Detection. ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2022-
May:3693–3697, 2022. ISSN 15206149. doi: 10.1109/ICASSP43922.2022.9746722.

[11] Mark Anderson and Naomi Harte. Learnable Acoustic Frontends in Bird Activity
Detection. In International Workshop on Acoustic Signal Enhancement, IWAENC 2022
- Proceedings, 2022. ISBN 9781665468671. doi: 10.1109/IWAENC53105.2022.
9914694. URL http://arxiv.org/abs/2210.00889.

86

http://arxiv.org/abs/2101.08596
http://arxiv.org/abs/2101.08596
http://arxiv.org/abs/2210.00889


[12] Jiawei Ren, Yuan Xie, Xiaowei Zhang, and Ji Xu. UALF: A learnable front-end
for intelligent underwater acoustic classification system. Ocean Engineering, 264
(September), 2022. ISSN 00298018. doi: 10.1016/j.oceaneng.2022.112394.

[13] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D.
Plumbley. Panns: Large-scale pretrained audio neural networks for audio pattern
recognition. IEEE/ACM Trans. Audio, Speech and Lang. Proc., 28:2880–2894, nov
2020. ISSN 2329-9290. doi: 10.1109/TASLP.2020.3030497. URL https://doi.
org/10.1109/TASLP.2020.3030497.

[14] Sören Becker, Marcel Ackermann, Sebastian Lapuschkin, Klaus-Robert Müller, and
Wojciech Samek. Interpreting and explaining deep neural networks for classifica-
tion of audio signals. CoRR, abs/1807.03418, 2018. URL http://arxiv.org/abs/
1807.03418.

[15] Karol J. Piczak. Esc: Dataset for environmental sound classification. In Proceedings of
the 23rd ACM International Conference on Multimedia, MM ’15, page 1015–1018, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450334594.
doi: 10.1145/2733373.2806390. URL https://doi.org/10.1145/2733373.
2806390.

[16] Hajo Holzmann and Sebastian Vollmer. A likelihood ratio test for bimodality in two-
component mixtures with application to regional income distribution in the EU. AStA
Advances in Statistical Analysis: A Journal of the German Statistical Society, 92(1):57 –
69, 2008. ISSN 1863-8171.

[17] Leon Cohen. Time-Frequency Analysis. Prentice-Hall, 1995.

87

https://doi.org/10.1109/TASLP.2020.3030497
https://doi.org/10.1109/TASLP.2020.3030497
http://arxiv.org/abs/1807.03418
http://arxiv.org/abs/1807.03418
https://doi.org/10.1145/2733373.2806390
https://doi.org/10.1145/2733373.2806390




Paper D





Few-shot bioacoustic event detection using an event-length adapted
ensemble of prototypical networks

John Martinsson1,2, Martin Willbo1, Aleksis Pirinen1, Olof Mogren1, Maria Sandsten2

1 Computer Science, RISE Research Institutes of Sweden
2 Centre for Mathematical Sciences, Lund University

Abstract

In this paper we study two major challenges in few-shot bioacoustic event detection:
variable event lengths and false-positives. We use prototypical networks where the
embedding function is trained using a multi-label sound event detection model in-
stead of using episodic training as the proxy task on the provided training dataset.
This is motivated by polyphonic sound events being present in the base training data.
We propose a method to choose the embedding function based on the average event
length of the few-shot examples and show that this makes the method more robust
towards variable event lengths. Further, we show that an ensemble of prototypical
neural networks trained on different training and validation splits of time-frequency
images with different loudness normalizations reduces false-positives. In addition, we
present an analysis on the effect that the studied loudness normalization techniques
have on the performance of the prototypical network ensemble. Overall, per-channel
energy normalization (PCEN) outperforms the standard log transform for this task.
The method uses no data augmentation and no external data. The proposed approach
achieves a F-score of 48.0% when evaluated on the hidden test set of the Detection
and Classification of Acoustic Scenes and Events (DCASE) task 5.

Proceedings: In proceedings of the 2022 Detection and Classification of Acoustic
Scenes and Events (DCASE) Workshop, Nancy, France, 2022.

Keywords: Machine listening, bioacoustics, few-shot learning, ensemble
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1 Introduction

The human-induced accelerated loss in biodiversity [1] has led to a need for automated and
low-cost wildlife monitoring where machine learning is a promising way forward [2]. Pas-
sive acoustic monitoring (PAM) is becoming an important tool in ecology for monitoring
animal populations through their vocalizations [3]. Annotating PAM data is costly and
requires specific domain expertise which motivates research on few-shot learning for bioa-
coustic event detection [4]. The goal of few-shot bioacoustic event detection is to detect
the onset and offset of animal vocalizations in sound recordings using only a few annotated
examples.

Recent work has demonstrated that prototypical networks are a promising approach for
few-shot sound event detection [5, 6, 7], but a remaining challenge is high variance in
classification accuracy between models because of the small amount of training data. Recent
work on audio classification and sound event detection has demonstrated promising results
using ensembles [8, 9, 10]. Ensembles may be especially useful for the few-shot task due
to the high variance in classification accuracy between models [11]. To the best of our
knowledge, prior work on ensemble methods for few-shot sound event detection remains
understudied and motivated by this we study the effect of using an ensemble of prototypical
networks for few-shot bioacoustic event detection.

Another challenge in few-shot sound event detection is the high variability in event lengths
for the different event classes [6]. The event lengths can range from milliseconds to multiple
seconds, which necessitates methods capable of adapting to the task specific event lengths.
Wang et al. [6] suggest that future work should look into adapting the context window to
the few-shot task. A common approach is to use a model which can handle variable context
windows, train using a fixed context window, and at test time adapt the context window to
the few-shot task. In this work we propose choosing the embedding function as well as the
context window based on the few-shot examples. The embedding function is chosen from
a set of embedding functions trained on different context windows, thus acting as experts
on certain event lengths. Another way to approach this problem is by using a proposal
based method [12].

2 Method

In this section we present our method which is based on prototypical networks [13] and
extended with an event-length adapted ensemble. We describe how each embedding func-
tion for the prototypical networks is trained and how the embedding functions are se-
lected based on the few-shot examples to produce an ensemble prediction at test time.
The full source code and instructions on how to reproduce the results can be found at:
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Figure 1: A log Mel spectrogram of part of a sound recording (top) and examples of predictions (bottom) from an ensemble
prototypical network (solid blue line) and a prototypical network (dashed blue line) as well as the given few-shot
examples (purple line) and remaining ground truth events (green line). The decision threshold τ is 0.5 (red line).

https://github.com/johnmartinsson/few-shot-learning-bioacoustics.

2.1 Training the embedding function

The goal is to learn an embedding function from the base training data, acting as a proxy
task for the few-shot task. The base training data set consists of annotated sound recordings
for 47 known event classes and one “unknown” event class. The set of sound event classes
are disjoint between the base training data and the few-shot task. We are given the start
and end times Ak = {(ski , eki )}Ni=1 of these classes, where (ski , eki ) denotes the start and end
time of sound event class k for annotation i. There is overlap in the annotations, i.e. two
different sound events can occur (partially) simultaneously, and we therefore treat this as
a multi-label problem. We model the 47 known sound event classes and the “unknown”
sound event class identically, yielding a total of K = 48 classes.

We assume that a fixed length audio segment x ∈ RT, consisting of T consecutive audio
samples, is fed to the embedding function fTθ : RT → RM (see section 2.4 for further
details), where M ≪ T. We split the audio recordings into audio segments xi ∈ RT by
sliding a window of size T with a hop size of T/2 over each recording. For each audio
segment xi, a target vector yi ∈ {0, 1}K×n is derived. If n = T it means that the target
contains one label per audio sample. Choosing n < T means that the temporal resolution
for the target is reduced. The resulting dataset Db = {(xi, yi)}Ni=1 defines the sound event
detection task used to train the embedding function.

A prediction of the target classes for a given audio segment xi is derived by ŷi = hϕ(fTθ (xi)),
where hϕ(·) is a linear layer followed by an element-wise sigmoid activation function, and
fTθ (·) is a convolutional neural network where the first layer is a (non-learnable) time-
frequency transform.
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The loss function is the mean element-wise binary cross-entropy between the target yi and
the prediction ŷi, where the mean is taken over the class dimension K and the temporal
dimension n.

For a fixed T, we train a set of C different embedding functions, parameterized as Θ =
{θ1, . . . , θC}, each with different randomly initialized weights of the neural network, dif-
ferent training and validation splits of the base training data, and different time-frequency
transforms in the first layer of the embedding function.

2.2 Prototypical network at test time

At test time we are given a sound recording and the M = 5 first event examples of the class
of interest. We denote these Ap = {(si, ei)}Mi=1 and call them the positive sound events.
We assume that the gaps between the positive event annotations are background noise and
let An = {(ei, si+1)}M−1

i=1 denote the start and end time of the M − 1 first negative sound
events. We assume the likelihood of an annotator missing events to be low.

Let li = ei − si be the length of annotation i. If li < T we “expand” the annotation with
the (T− li)/2 preceding and subsequent audio samples to get an audio segment of length
T, and if li ≥ T we do not expand. We then split this into segments of length T by sliding
a window of size T over the signal with a hop size of T/16 (if expanded this will only
result in one segment). Let Sp denote the set of positive audio segments derived from these
annotated start and end times, and let Sn denote the set of negative audio segments. We
use the embedding function fTθ and define the prototypes as

ck =
1
|Sk|

∑
x∈Sk

fTθ (x) (2.1)

and derive a pseudo-probability of audio segment x belonging to sound class k from the
prototypical network by

pθ(y = k|x) =
exp(−d(fTθ (x), ck))∑
k′ exp(−d(fTθ (x), ck′))

, (2.2)

where k ∈ {n, p} and d(fTθ (x), ck) denotes the Euclidean distance between the query fTθ (x)
and the prototype ck.

The query set Sq is derived by sliding a window of size T over the signal with a hop size of
T/2. The reason for setting the hop size relative to T is that this means that we do equally
many predictions for each audio sample in the validation recordings.
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2.3 Our contributions

We now present the two main contributions of this paper: i) an event-length adapted em-
bedding function for the few-shot task, and ii) using an ensemble of predictions.

Adapting the embedding function. We use the annotated positive events Ap =
{(si, ei)}Mi=1 and compute the set of event lengths L = {ei − si}Mi=1. We choose
T∗ ∈ {T1, 21T1, 22T1, 23T1} such that

√
(T− lmin/2)2 is minimized, where lmin is the

shortest event length in L.

We choose T1 = 2048 which is 0.09 seconds at a sampling rate of 22050 Hz so that we can
plausibly detect the shortest events in the few-shot validation set. We limit the amount of
extra computation needed during training and the extra memory needed during inference
by setting the maximum T to 23T1.

Ensemble. Let Θ = {θT∗
i }Ci=1 denote the set of parameters of C different prototypical

network models adapted to the average event length of the few-shot task. Then we define

pΘ(y = k|x) = 1
C

∑
θ∈Θ

pθ(y = k|x) (2.3)

as in [14], which can be viewed as a uniformly-weighted mixture of experts. We say that
x belongs to the positive event class if pΘ(y = p|x) > τ and otherwise x belongs to the
negative event class. This is done for every x ∈ Sq. Finally, if the query is classified as a
positive event then the start and end time associated with that query is used as the predicted
positive event timings.

2.4 Details of the embedding function

The embedding function consists of a time-frequency transform followed by a convolu-
tional neural network, both of which are briefly described below.

Time-frequency transform. The first layer of the embedding function is a time-frequency
transform. We use the Mel transform where the number of Mel bins is 128, the window
size is roughly 25ms, and the hop size is half the window size. We either use the log trans-
form as a loudness normalization or we use PCEN [15] with fixed parameters developed for
speech audio or for bioacoustics as suggested in [16].

Convolutional neural network. The convolutional neural network used is an adapted ver-
sion of the 10-layer residual neural network [17] used in the baseline for the challenge.
Specifically, we i) add the classification head hϕ(·) so that we can model the defined multi-
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label task, ii) use the same number of filters in every convolutional layer, and iii) reduce the
max pooling along the time-dimension when audio segments are too short.

2.5 Evaluation metric

The method is evaluated by taking the harmonic mean over the F-scores for the different
subsets in the evaluation sets. The F-score is computed by a bi-partite matching between the
predicted and ground truth events, where the requirement for a match is an intersection-
over-union (IoU) of at least 0.3 [4].

2.6 Post-processing

Since we get one prediction for each query audio segment, this limits the possible length
of the prediction with this model. To solve this, we simply merge all overlapping predicted
positive events into one detected event with a single start and end time.

A predicted positive event will only be considered to be a match with a true positive event
during evaluation if they have an intersection-over-union (IoU) of at least 0.3. We therefore
remove predictions which are shorter than 0.3∗ lavg or longer than (1/0.3)∗ lavg, where lavg
is the average event length of the given five annotations. Since predictions of these lengths
can on average not be matched with true events as the evaluation is defined.

3 Data

We use the few-shot examples to compute the mean event length, the mean gap length, and
the density of annotated sound events – see table 1. The few-shot validation set consists of
three different subsets: HB, ME, and PB. The HB subset contains long events with low
noise. The ME subset contains short events with low noise. The PB subset contains very
short events with very high noise. The mean event length is defined as the mean length
of the five annotated events; the mean gap length is defined as the mean length of the
unannotated gaps between the five annotated events; and the density is the sum of the time
of the five annotated events divided by the total time. A full description of the dataset can
be found in [18].
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Table 1: Few-shot validation data statistics.

Subset Mean event length Mean gap length Mean density

HB 11.25 ± 3.11 6.12 ± 5.39 0.73 ± 0.12
ME 0.22 ± 0.03 1.40 ± 0.04 0.17 ± 0.02
PB 0.12 ± 0.08 59.89 ± 55.55 0.01 ± 0.02

4 Experiments and Results

We have trained each embedding function on the described multi-label task on the base
training data using the Adam [19] optimizer with a learning rate of 1e−3. The network is
trained on a random split with 80% training data and validated on the remaining 20%.
Each network in the ensemble is trained on a different random split. The training proceeds
until we have observed no reduction in validation loss for the last 10 epochs and the model
with the lowest validation loss is chosen as the final model. The temporal resolution of the
targets have been fixed to n = 16, meaning that we have 16 targets for any given audio
segment.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F-
sc

or
e

Ensemble
Prediction 0
Prediction 1
Prediction 2
Prediction 3
Prediction 4

(a) Ensemble over seeds, and
training splits.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F-
sc

or
e

Ensemble
log Mel
PCEN (bio)
PCEN (spch)

(b) Ensemble over time-
frequency transforms.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6
F-

sc
or

e
Adaptive
T/sr = 0.09 [s]
T/sr = 0.19 [s]
T/sr = 0.37 [s]
T/sr = 0.74 [s]

(c) Adapted embedding function.

Figure 2: A comparison between: (a) an ensemble of five predictions using embedding functions trained on PCEN (bioacoustics)
features with each of the individual predictions, (b) an ensemble of embedding functions trained and tested on logMel,
PCEN (bioacoustics), or PCEN (speech), with an ensemble of predictions over all three, and (c) the adaptive embedding
function with using each of the fixed size embedding functions respectively (sr denotes the sample rate). All results in
the figure are derived on the few-shot validation set.

In figure 2a we compare the F-score achieved on the few-shot validation set when using an
ensemble of five predictions with using each of these predictions by themselves. The time-
frequency transform used is PCEN (bioacoustics). The achieved F-score by the ensemble
is higher than the best of these individual predictions for 0.4 ≤ τ ≤ 0.6, and outperforms
or matches the mean of them for other τ . We also note that the optimal τ is around 0.7
for the single predictions, and moves to 0.6 for the ensemble.

In figure 2b we compare the F-score of a five prediction ensemble for each time-frequency
transform and compare this to an ensemble over all three time-frequency transform en-
sembles. We do not observe a significant increase in F-score when comparing the time-
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frequency ensemble to the ensemble using the PCEN (bioacoustic) time-frequency trans-
form, but the time-frequency ensemble outperforms the ensemble using PCEN (speech)
and log Mel transform. The optimal threshold τ varies around 0.6 to 0.7 for the ensembles
using a single transform, and is at 0.6 for the time-frequency ensemble.

In figure 2c we compare the F-score achieved on the few-shot validation set when using
the event-length adapted embedding functions in the ensemble with using any of the fixed
T ∈ {T1, 21T1, 22T1, 23T1}. Adapting the embedding function increases performance
from 53.0% (using best T = 4096) to 60.0% F-score for τ = 0.6.

In table 2 we show an ablation study. Adapting the embedding function increases the F-
score on average with 8.3 percentage points, and adding the ensemble increases the F-score
an additional 11.4 percentage points. We compare against a prototypical network using an
embedding function (no ensemble) which has been trained on PCEN (speech) and a best
performing fixed segment length of 4096. The F-score when no ensemble is performed is
the average (and standard deviation) over each single network in the ensemble.

Table 2: An ablation study of our system on the few-shot validation set where we add adaptive embedding functions and
ensemble.

Method Ensemble Adaptive F-score

Ours No No 41.3 ± 3.8
Ours No Yes 49.6 ± 5.3
Ours Yes Yes 60.0

In table 3 we present the F-score from the final evaluation on the hidden test set from the
challenge. We include information on whether or not the system uses data augmentation
techniques or external datasets during training.

Table 3: The final F-score evaluation on the hidden test set for the baselines provided by the challenge organizers: template
matching (TM) and prototypical networks (PN), and the top five submissions for the challenge.

System External data Augmentation F-score

Baseline (TM) No No 12.3
Baseline (PN) No No 5.3

Ours [20] No No 48.0

Tang et al., [21] No No 62.1
Liu et al., [22] Yes Yes 48.2
Hertkorn [23] No No 44.4
Liu et al., [24] Yes Yes 44.3
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5 Discussion and Conclusions

In this section we will discuss our results and relate them to the baselines which were all
developed concurrently to our work.

During development of this method we observed that random sampling of Sn, the set of
negative examples does not work well for validation files with high event densities, which
is why we chose to use the gaps between the first five annotated events instead. This obser-
vation was also made in concurrent work submitted to the challenge [21, 22, 24]

We further observed that a fixed audio segment size T resulted in poor predictive perfor-
mance on the few-shot validation set in cases where event-lengths deviated from size T.
Indicating the importance of adapting the embedding function.

We observed that the optimal threshold was different for the few-shot validation tasks and
choosing a default value of τ = 0.5 to be detrimental. However, finding an optimal
threshold for the few-shot tasks is a difficult problem. Using an ensemble alleviates this
issue by moving the optimal threshold closer to the default value.

The ensemble improves performance by correctly predicting most true positives, while re-
ducing the number of false positives. This could intuitively be thought of as the ensemble
being in agreement for true positive predictions, the average of which still yields a high
pseudo-probability, while being in disagreement when predicting false positives, the aver-
age of which would be closer to 0.5. This effect can be seen in figure 1, where some of the
false positives predicted when not using an ensemble (dashed blue line) are removed by us-
ing an ensemble of the predictions (solid blue line), leading to a reduction in false-positives.

The baselines in this study were all developed concurrently to our work. Tang et al., [21] pro-
pose using a frame-level cross-entropy loss function for training instead of episodic training
as the proxy task. Our approach is similar when setting the temporal resolution n of the
target vector to the number of frames in the time-frequency image. The effect of varying
temporal resolutions n for the proxy task would be interesting to study in future work. Tang
et al. [21] further propose an iterative training scheme to adapt their method to the few-
shot task [21] where the unlabeled audio in the test files is iteratively classified and then used
for training. Liu et al. [22] and Liu et al. [24] use transductive inference to better adapt
to the evaluation set, and Hertkorn [23] studies the importance of choosing appropriate
parameters for the used time-frequency transform.

In conclusion, we have shown that choosing the embedding function based on the event
lengths will increase performance, and that false-positives can be reduced by an ensemble of
predictions. We have also shown that out of the three time-frequency transforms we have
studied, PCEN (bioacoustics) performs best, followed by PCEN (speech) and log Mel.
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