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A Novel Method for Smart Fire Detection

using Acoustic Measurements and Machine

Learning – Proof of concept

Abstract

Fires are a major hazard resulting in high monetary costs, personal suffer-
ing, and irreplaceable losses. The consequences of a fire can be mitigated
by early detection systems which increase the potential for successful
intervention. The number of false alarms in current systems can for some
applications be very high, but could be reduced by increasing the reliabil-
ity of the detection system by using complementary signals from multiple
sensors. The current study investigates the novel use of machine learning
for fire event detection based on acoustic sensor measurements. Many
materials exposed to heat give rise to acoustic emissions during heating,
pyrolysis and burning phases. Further, sound is generated by the heat
flow associated with the flame itself. The acoustic data collected in this
study is used to define an acoustic sound event detection task, and the
proposed machine learning method is trained to detect the presence of
a fire event based on the emitted acoustic signal. The method is able to
detect the presence of fire events from the examined material types with
an overall F-score of 98.4%. The method has been developed using lab-
oratory scale tests as a proof of concept and needs further development
using realistic scenarios in the future.

Keywords: Fire detection, artificial intelligence, machine learning, deep
neural networks, acoustic emissions, sound

1 Introduction

Fires are a major hazard, generating direct costs for our society in the order
of approximately 1-2% of the GDP in many developed countries [1]. In addi-
tion to the direct monetary cost of fires there are additional consequences in
terms of personal suffering, property and environmental loss, and loss of vital
societal functions for short or long periods of time. One way to mitigate the
consequences of unwanted fires is to ensure their detection at an early stage,
thereby increasing the potential for successful intervention.
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Fire detection systems are common in most industrial facilities, assembly
premises, hotels and health care facilities. A recent study, however, indicated
that the number of false alarms on automatic alarm systems in Germany could
be as high as 87% [2]. Similar data from Sweden indicates that false alarms
could actually be as high as 97% in certain applications [3, p. 81]. Indepen-
dent of the actual size of the problem, false alarms are a serious problem for
the owner of a facility, for people in the building and for the fire and rescue
services called to the building to respond to the fire. A false fire alarm creates
unnecessary interruptions to business operations, forces people to evacuate and
introduces a high unnecessary traffic risk. The reasons for false alarms vary
depending on the type of detector, its application and position; but, reasons
may include non-fire particles in a dirty industrial environment or produced
by cooking in a kitchen (whether domestic or industrial), or steam produced
in industrial or domestic situations. In essence, there are two solutions to this
problem, either false alarms are stopped by organisational measures, i.e. a fire
must be confirmed by a complementary means before activating the detection
system to initiate a response; or the reliability of the detector is increased
through a variety of technical measures. In the latter category, some effort has
been made to study multi-sensor fire detection to improve the reliability of
detection and reduce the number of false alarms [4, 5]. Such systems typically
rely on a combination of traditional sensors and data treatment to reinforce
detection reliability by confirmation of detection through several fire character-
istics such as, e.g. smoke, temperature, CO-emissions and CO2-emissions (see
e.g. [6], [7]). While such efforts have been successful in improving the level of
detection compared to single sensor detectors [6]), they typically rely on a range
of chemical (e.g. species) detection methods, heat and particle detection [8].

In recent years, papers have been published concerning the use of various
types of machine learning to improve the development of algorithms to analyse
these multi-sensor signals (see e.g. [9] and references therein). However, the
authors have not been able to find recent papers that refer to the use of audio
signals to detect fires. The closest study in the literature concerns a recent
article where the authors detect the position of a fire and its characteristics
using sound emitted by the detector rather than the fire, in an effort to improve
data collection as input to tactical response to the fire [10]. In this application,
Xiong et al. [10], assume that the fire itself has been detected by other means
and the sound is produced by the alarm itself. But using acoustic signals as a
way to detect fires is not addressed in the paper.

Clearly, there is a need to improve the capability for simple detectors to
perform with a high level of reliability and, in the long term, this needs to be
solved in a cost effective manner [11]. Two strategies can be identified in the
literature to solve the issue: improve existing detectors with respect to their
sensitivity by signal filters, or find alternative fire characteristics to detect
an incipient fire [12]. The current study aims to investigate the novel use of
machine learning for fire detection based on acoustic measurements (FORMAS
Contract# 2019-00954) in an effort to improve reliability while using simple
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detection methods, i.e. the focus is on using the second method with an alter-
native fire characteristic being applied to detect the fire. The advantage of
using sound as the fire characteristic is that it can rapidly reach the detector
(more rapidly than smoke dispersion or convective heat transfer through air)
and it is less hindered by physical barriers such as walls. Indeed, the concept
of using acoustic measurements to detect fires was first investigated in the
1990’s at the National Institute of Standards and Technology (NIST) in the
US [13], although acoustic flame characteristics have been investigated since
the 1960’s [14], albeit without reference to fire detection. In a more modern
application of acoustics to combustion phenomenon, Nair [15] investigated the
use of sound to identify flame blow-off. While interesting from a combustion
point of view, his methodology has not been applied to the detection investi-
gation presented in this article as there is no assumption of a steady flame to
detect burning.

The initial work by Grosshandler and Jackson [13] provided proof-of-
concept for using acoustic detection, but was not pursued due to difficulties
with signal to noise ratio and acoustic measurement technologies which could
not detect signals for large distances at that time. In the initial study, the
efficacy was limited since the detection algorithm was based on hard-coded
algorithms. Sound sources are often characterized only by the sound power
they are emitting. Sometimes, characteristics of the frequency domain are also
studied, with e.g. high-pass or low-pass filters, but it may not be possible to
differentiate between vastly different sources, such as music and construction
noise, with analytical or numerical methods unless the time domain is consid-
ered. When the time signal is considered, however, typically either very simple
relationships are considered, e.g. counting the number of events over a thresh-
old level, or complicated processes are studied that depend on well-defined
and stable conditions. One example is the Minor Component Analysis (MCA)
based method to detect signatures in the time domain presented by Kwan et
al. [16].

Recently, machine learning has made great progress for many applications,
due to algorithmic developments together with progress in computational
capacity and the availability of large datasets with labelled data. Indeed,
in a review by Naser [17], the application of machine learning and artificial
intelligence in fire engineering and sciences was explored. Naser identified the
use of machine learning in enhancing fire detection in domestic applications
and wildland fires, but relied on traditional sensors or picture information.
In no case that we have found has machine learning been applied to acous-
tic signals. One of the most successful approaches is deep-learning, which
applies artificial neural networks (ANN) with many layers to problem solv-
ing. To date, deep learning has been used in such diverse applications as to
achieve computer vision for self-driving cars, speech recognition, automatic
translation, and text summarization [18]. In particular, a method called
convolutional neural networks has completely redefined the state-of-the-art
for processing images, video, and audio. In the area of fire safety, several
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attempts have been performed using computer vision techniques based on
deep learning for fire detection [19–21]. Deep learning models have the capac-
ity to discriminate complex patterns in high-dimensional data, potentially
overcoming the limitations in early approaches to sound-based fire detection
mentioned above. This paper provides a proof-of-concept for using acoustic
measurements together with machine learning for rapid fire detection. The
aim is that this proof-of-concept will provide the foundation for more applied
research into early fire detection in real fire scenarios where traditional fire
detectors are prone to false alarms such as dirty industrial environments, or
domestic environments with confounding issues making detection difficult.
The novelty of this article is the combination of machine learning techniques
with those of acoustic measurements of a simple fire. The aim is to simplify
the fire scenario by using a standardised fire test methodology, i.e. the cone
calorimeter (ISO 5660). This simplified application has been chosen to limit
the research question to whether it is possible to use machine learning to
teach a system to recognise whether there is a fire or not. Future studies
will explore such questions as, which scenarios are most relevant to acoustic
fire detection and whether additional acoustic complications (e.g. additional
background noise) invalidate the method. When conducting this work, the
authors were in agreement that there is a clear need to simplify the applica-
tion in this first step and to add layers of complexity in the next step.

2 Theory

This section contains theory for acoustic emissions from fires and machine
learning for sound event detection which are relevant to understand the
contents of the paper.

2.1 Sound generation mechanisms for fire

Acoustic emission is an essential element of the fire detection algorithms devel-
oped in the current study. Fire detection using acoustic emission has been
evaluated by Grosshandler and Braun [22] (who actually measured surface
vibrations) and by Kwan et al. [16]. These initial studies have, to date, not
been pursued further, particularly due to the high risk of false alarms and the
problems associated with formulating threshold rules, based on analytical or
signal process approaches that can function in noisy environments.

Acoustic emission is defined in ISO 2007 [23] as the range of phenomena
that results in the generation of structure-borne and fluid-borne (liquid or gas)
propagating waves due to the rapid release of energy from localized sources
within and/or on the surface of a material. The sounds are typically either very
short transient signals of a wide frequency range, or more continuous signals
with narrower frequency distribution due to e.g. leaking heated fluids. There
are several types of sound associated with different stages of fire development,
from heating and ignition to flaming combustion.
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Fig. 1: In this work, we consider machine learning models based on deep con-
volutional neural networks, consisting of a series of transformations or layers.
Each layer consists of a linear transformation (matrix-vector multiplication),
and an element-wise nonlinearity. Convolutional layers also incorporate a con-
volution operation which provides spatial invariance. The input to the neural
network is a sound signal which is transformed into a Mel spectrogram.

For flaming combustion, sound is generated by hydraulic instabilities and
turbulence in the flame and fire plume and is typically located in the infra-
sound frequency range, although the resulting generated sound may be within
the audible range. Detriche and Lanore [24] investigated the pulsation char-
acteristics of small pool fires in 1980 and concluded that the signal was very
sensitive to surrounding conditions, making it difficult to use analytical sound
characterisation for detecting a fire. It should be noted that improved sen-
sor technology has been developed since the 1980’s, and progress in signal
processing and data analysis techniques might motivate these studies to be
revisited.

Both during heating and flaming combustion, sound is typically emitted
by the fuel itself. Indeed, the sound that is generally associated with the
moniker “fire sound”, is that generated and emitted by heated material. For
solid materials, the sounds originate from internal stress due to the physical
decomposition and deformation of the material during the heating, pyrolysis
and burning phases. A typical example is the crackling sound from burning a
log of wood originating from evaporation of small pockets of trapped water in
the material. Liquid fuels, as well as some thermoplastics which melt before
burning (e.g. PMMA), sound can also be emitted due to boiling of the fuel.

Fires can also induce sounds not directly linked to the combustion process.
One example is a paper recently published by Thompson et al. [25] where they
use the sound of firebrands as they impact on a steel box to both detect the
location of the flame front as well as the fire intensity at that location.

2.2 Machine learning for sound event detection

Machine learning techniques such as deep neural networks have revolution-
ized many fields, including computer vision [18]. Recently, learnings from the
field of computer vision have been transferred to sound event detection. The
goal of sound event detection is computerized analysis of acoustic signals for
detection of sound events, i.e. what is heard and when does a specific event
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occur [26]. Deep neural networks contain a sequence of simple transformations
which are usually trained together end-to-end, and learn a hierarchy of repre-
sentations for the input signal, in each step transforming the data into a space
more suitable to solve the end task (see figure 1). Similar to two-dimensional
optical images, the time-frequency representation of audio signals have success-
fully been modelled using a version of neural networks known as convolutional
neural networks [27].

Convolutional neural networks learn to detect complex patterns in a spa-
tially organized input. This includes the potential of spatial invariance, which
allows a vision model to detect patterns at different spatial locations, and an
acoustic model to detect patterns at different locations in the time-frequency
domain. Compared to other machine learning approaches (including Multi-
layer Perceptrons), a convolutional network is relatively parameter efficient,
and has a larger field-of-view. This class of models obtains state-of-the-art
results in many tasks within both vision and acoustics.

3 Experimental methodology

This section contains a description of how the sound data from the fire experi-
ments were produced and collected, as well as a description of the experimental
setup for training and designing a deep convolutional neural network for sound
event detection.

3.1 Fire experiments

Fire experiments were performed using the cone calorimeter [28], which is
one of the most widely used instruments for ignition tests within fire science
and known to develop repeatable and reproducible results. The method has
been standardized in ISO 5660 and ASTM E1354 (see figure 2) but basically,
the apparatus was applied as a radiative panel without any measurements of
effluent gases, heat release rate or weight loss. The apparatus was slightly
modified, i.e. the hood was removed to reduce the sound generated from the
fan and instruments in the cone calorimeter on the recordings.

Typically, the experimental procedure was to heat up the cone, mount
the sample in the sample holder and prepare the recording devices, i.e. the
recorder and the microphone. The next step was to initiate the recording,
place the sample holder under the pre-heated cone and open the aperture
shielding the radiative cone from the sample, thus starting the experiment.
The timing started as the aperture opened. The ignition process is inher-
ently unsteady and, therefore, no distinction between the different stages in
the burning process (see Section 2) has been made. Each experiment was ter-
minated when the sample material stopped burning (see table 2). This was
deemed appropriate for the current study which is a proof-of-concept, future
studies should investigate possible differences in acoustic signatures for dif-
ferent stages. Even as the purpose with the experiment was to record sound
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Fig. 2: The cone calorimeter setup used in the experiments.

during the preheating time, i.e. before the material ignited, the recording con-
tinued until the material stopped burning to collect also sound during the
burning phase. A set of six materials or material combinations were chosen for
the initial investigation. Approximately half the tests included wood (softwood
(spruce), hardwood (oak) and chipboard), with the remaining containing plas-
tic (polymethylmethacylate (PMMA), polyurethane (PUR) and a PUR/fabric
combination). The choices were made to explore a range of common material
and fire performance, i.e. charing and melting, see table 1. Cone calorime-
ter samples are typically preconditioned according to ISO 5660-1 to minimize
sample variability between tests. However, in this application, variability was
desirable to prevent overfitting of the model. Therefore, the samples were not
preconditioned. To make sure that the signal detected is the fire event, and
not the noise from the cone, the isolated sounds emitted by the cone without
any sample material was also collected (see table 2).

Even as the hood over the cone was removed, there was still some back-
ground noise in the room, mainly emitted by the ventilation system in the lab.
To reduce the influence of noises due to the ventilation system in the machine
learning phase, the fan was arbitrarily turned on and off during some trials.
Timing for when the fan should be turned on or off was sampled randomly
between 30 and 50 seconds (see table 2). Further, acoustic damping using
mineral wool was mounted on nearby rigid steel surfaces (see figure 2).

The sound was recorded using a Zoom H2n, with a sampling frequency of
96 kHz/24 bit, connected to an external microphone of type Earthworks Audio
M23. The microphone was placed approximately 100 mm from the sample. The
distance between the microphone and the sample was chosen short enough to
be able to detect sound from the material decomposition and at the same time
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with a safe enough distance from the radiative heat source to not damage the
microphone. It is desirable to position the microphone as close to the sample
as possible as the sound pressure reduces by the square of the distance. The
samples were all 100 x 100 mm. Sample material, sample thickness, incident
radiation and the data collected is presented in table 1.

Table 1: Description of the sound data recorded for the fire event class detail-
ing the different material types, the radiation used during the heating phase,
the thickness of the material, the number of trials (whole experiment, including
the heating, pyrolysis and burning phases), and the total amount of recorded
time for each material type.

Sample Radiation Thickness Number of trials Total recorded time
- kW/m2 mm - min

Oak 35 45 3 33
Oak 30 45 1 15
Oak 35 10 4 22

Spruce 30 43 1 18
Spruce 35 43 15 178
PMMA 30 10 5 61
PMMA 35 10 1 8
PUR 35 50 1 2

PUR/fabric 35 50 1 5
Chipboard 35 10 3 19

All recordings where a sample material and radiation is present are con-
sidered as fire events (see table 1), and recordings without either a sample or
radiation are considered as non-fire events (see table 2). These acoustic data
recordings were used to train a machine learning model to distinguish between
fire events and non-fire events, which is further explained in Section 3.2.

Table 2: Description of the sound data recorded for the non-fire event class
detailing the presence of fan noise, radiation noise, the number of trials and
the total recorded time.

Fan Radiation Number of trials Total recorded time
- kW/m2 - min

On 0 1 5
Off 0 1 5
On 35 3 17
Off 35 2 20

Varying 30 1 15
Varying 35 1 15
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3.2 Machine learning for acoustic fire detection

This section presents the way the model has been trained to distinguish
between fire and non-fire events on acoustic recordings of fires, and gives a
description of the model architecture1.

3.2.1 Training setup

The acoustic recordings of fire events and non-fire events were first split into
training, validation, and test sets. The training set was used to train the model,
the validation set was used to validate the model during training, and the test
set was used to evaluate the performance of the final model. The recordings
were down-sampled to 32kHz to reduce the computational cost and further
split into 5 second long segments without overlap. The segments were then
uniformly and independently sampled, without replacement, into the training
(70%), validation (10%) and test (20%) set respectively. The resulting training,
test and validation all have a class imbalance and consists of 16% to 20%
non-fire events and 80% to 84% fire events.

The training data was split into batches of 16 segments each and these were
used together with a loss-function and the model to compute the gradients
used to update the model parameters. The model parameters were optimized
using the optimization method Adam [29] which is an extension of the opti-
mization method stochastic gradient decent. A loss function is used to guide
the optimizer. Since there are two classes, fire event and non-fire event, this
was modeled as a binary classification problem. Binary cross-entropy was the
loss function used. An epoch of training is one iteration through the whole
training dataset. The model was trained until no more improvements in the
loss were observed on the validation data during the previous 100 epochs after
which the model with the lowest validation loss was chosen. The training and
validation loss curves are shown in figure 3, where the model has been trained
for a total of 218 epochs meaning that the model with the lowest validation
loss was observed at epoch 118 which is the chosen model.

3.2.2 Model

The state-of-the-art convolutional neural network model introduced by Kong
et al. [30] was used to model the acoustic data. The architecture was designed
for classification of sound events, and has been shown to transfer well between
different problem domains. The architecture has 14 layers (see Table 3) and
takes as input a time-frequency representation of the audio waveform. The
time-frequency representation is a Mel spectrogram [31] which is a series of
short-time Fourier transforms on sequences of the input data followed by a Mel
filter-bank which projects them onto Mel bins. While designing a filter-bank
specifically for this task may be beneficial, the development and evaluation of

1A complete description of the training setup and the model, as well as instructions
on how to reproduce the main results of this study can be found in the Git-repository:
https://github.com/anonymous7483/fire-event-detection-dataset/
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Fig. 3: The training and validation loss curves observed during model training.

Table 3: The 14 layer convolutional neural network architecture, consisting
of 12 convolutional layers with a kernel size of 3 x 3 and different feature map
sizes according to the table. All followed by a batch normalization layer and a
rectified linear unit (ReLU) activation function. The last two layers are fully-
connected layers of size 2048 and 1 with a ReLU activation and a sigmoid
activation respectively.

Model architecture CNN14
Input Log-mel spectrogram, 64 Mel bins

Layers



(3x3 @ 64, BN, ReLU) x 2
(3x3 @ 128, BN, ReLU) x 2
(3x3 @ 256, BN, ReLU) x 2
(3x3 @ 512, BN, ReLU) x 2

Average pooling 2 x 2
(3x3 @ 1024, BN, ReLU) x 2

Average pooling 2 x 2
(3x3 @ 2048, BN, ReLU) x 2

Global average pooling
FC 2048, ReLU

Output FC 1, Sigmoid

this is left for future work. In this work, the Mel filter-bank is used because
of its general applicability and for being the standard choice in the machine
listening literature [26].

Any audio segment which is assigned a sigmoid output score of more than
a threshold τ is considered as a fire event, otherwise a non-fire event. This
threshold can be adjusted, a higher threshold means that the network needs
to assign a higher score for an event to be considered as a fire event, which is
a way to adjust how sensitive the model is.
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Table 4: Parameters for the Mel spectrogram.

Window length 1024
Hop length 320

Window Hanning
Mel bins 64

Input representation

The input to the model is a 5 second waveform with a sample rate of 32kHz,
resulting in 160, 000 samples. A window of size 1024 is moved over the wave-
form with a hop length of 320, and a short-time Fourier transform is applied
to each windowed segment of the waveform to compute the periodogram for
each windowed segment. The result is a sequence of periodograms, which is
called a spectrogram. The spectrogram is then processed by a Mel filter-bank,
which were chosen as a set of 64 triangular filters used to map a decibel-scaled
power spectrogram onto the Mel scale [31] (see table 4 for a summary of the
parameters).

Model layers

The Mel spectrogram passes through the convolutional neural network which
consists of several different layers (see table 3). In the table “(3x3 @ 64, BN,
ReLU) x 2” denotes a convolutional block, which consists of a convolutional
layer with a kernel of size 3x3 wich outputs 64 feature maps (3x3 @ 64), fol-
lowed by a batch normalization layer (BN) and a rectified linear unit (ReLU),
applied twice (x2) in that order. Standard average pooling layers are used to
reduce the dimensions of the representation, and finally a global average pool-
ing layer is used to take an average over the time-dimension before applying
two fully-connected (FC) neural network layers to the final representation of
the input. During the training phase a dropout layer with a dropout fraction
of 0.2 is applied after each convolutional block.

Dropout [32] is used to prevent over-fitting during training, which is when
the model learns the training data too well, and starts performing worse on
validation and test data. Batch normalization [33] is used to reduce internal
covariate shift, and is a way to stabilize the training of the neural network and
to speed up convergence.

The rectified linear unit (ReLU) is a non-linear activation function:

f(x) = max(x, 0), (1)

which has become a standard activation function in the deep learning liter-
ature. Compared to e.g. the sigmoid function, the ReLU function requires little
computation, and it is argued to reduce the problem of vanishing gradients.

Output representation

A fire event is modeled as a 1 and a non-fire event as a 0 using the logistic
function:

f(x) = 1/(1 + e−x), (2)
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where x is the output of the last fully-connected layer in the deep convolutional
netural network.

4 Results

This section contains the results from the analysis of the acoustic signals col-
lected from the different fires, and presents the evaluation results of the final
sound event detection model when applied to the test data.

4.1 Acoustic recordings of fire events

A dataset was collected as described in section 3.1. Details of the data can be
seen in table 1 and table 2.

Figure 4 shows an example Mel spectrogram for a 5 second segment for
each material type. These are arbitrary examples which have been chosen to
provide a visual understanding of the difference between the sound events
that occur for the different materials. For the human observer it is easy to
distinguish PMMA fire event from a non-fire event, however, for the other
materials, the distinction is not as clear. There are clear transient sounds in
the recordings from all materials, and, by manual inspection of many of these
Mel spectrograms, these transient sounds are the least visually prominent for
the recordings of oak fire events.

4.2 Fire event detection using a convolutional neural
network

This section presents the results from the analysis of using a deep convolutional
neural network for acoustic fire event detection. All results are presented for
two different values of τ (see Section 3.2) where τ = 0.5 is the default choice,
and τ = 0.97 is chosen such that the number of false positives using the
validation data is zero. The effect of τ can be seen in figure 6.

The main results which demonstrate the effectiveness of the method on the
collected data are presented in table 5. The model achieves a 97.1% accuracy
on the test set for the default value of τ and a precision, recall and F-score
all equal to 98.4%, which means that there are equally many false positives
as false negatives, in this case 14 of each. Choosing τ = 0.97 means that the
model becomes less sensitive towards detecting false positive fire events at the
cost of becoming more sensitive towards detecting false negative events. That
is, trading precision for recall. The overall performance of the model decreases,
but maintains a high accuracy and F-score.

The fire event class consists of recordings of fire events from five different
material types: spruce, oak, PMMA, PUR and chipboard, and the non-fire
event class consists of recordings when there is no material present, i.e. the
material type “none”. A further analysis of the model performance on each
different material type is shown in table 6. The effect of τ is apparent in this
table which shows that the less sensitive model achieves a higher accuracy on
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(a) Non-fire event.

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8

Time

0

512

1024

2048

4096

8192

16384

H
z

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

(b) Spruce fire event.
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(c) Oak fire event.
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(d) PMMA fire event.
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(e) PUR fire event.
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(f) Chipboard fire event.

Fig. 4: Mel spectrogram visualization of the waveform collected from each
different material type.

the non-fire events at the cost of achieving a lower accuracy for in particular
the oak material, but also slightly lower for spruce and PMMA.

In figure 5 the accuracy of the model on fire events (lower right) and non-
fire events (upper left) is presented, as well as the false positive (upper right)
and false negative (lower left) rate, for different values of τ .
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Table 5: The accuracy, precision, recall and F-score for the CNN14 model on
the test set with two different threshold values. A fire event is considered as
the positive class, and a non-fire event is considered as the negative class.

Metric τ = 0.5 τ = 0.97

Accuracy 97.3 % 95.1 %
Precision 98.4 % 99.6 %

Recall 98.4 % 94.5 %
F-score 98.4 % 97.0 %

Table 6: Model accuracy for each respective material in the test set, with
τ = 0.5 and τ = 0.97.

Material Accuracy (τ = 0.5) Accuracy (τ = 0.97)

None 91.6 % 98.2 %
Spruce 99.8 % 98.1%

Oak 92.9 % 78.2 %
PMMA 99.4 % 98.9 %
PUR 100 % 100 %

Chipboard 100 % 100 %
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Fig. 5: The normalized confusion matrix for τ = 0.5 (a) and τ = 0.97 (b).

5 Discussion

The current study presents a setup and method for data collection of acoustic
signals from fire events. The collected acoustic signals are used to define a
classification task for fire event detection. A convolutional neural network is
used to model the acoustic signal and to detect the fire event. These fire events
are shown to be detectable with an accuracy of 97.3%, a precision of 98.4%,
a recall of 98.4%, and an F-score of 98.4% when the threshold τ is set to 0.5.
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Fig. 6: The effect of different threshold values on the true positive and false
positive rate.

That is, the fire events, as defined in this study, are shown to be detectable
from the acoustic signal using a convolutional neural network.

Note that the class imbalance in this dataset does not reflect what is
expected in most real settings where non-fire events would be expected to
greatly outnumber fire events. The presented accuracy of the model should
therefore be read with that in mind. The F-score and ROC curve are presented
as a complement which are suitable metrics for imbalanced datasets.

The accuracy of the fire event detector varies depending on the material
being exposed to the heating condition. The materials that give rise to a very
distinct acoustic signal, such as PMMA, are detectable with very high accu-
racy, and the materials that give rise to a less distinct acoustic signal, such
as oak, are harder to detect. Of the wood samples tested, spruce is detected
with the highest accuracy and it can be hypothesised that this is due to the
more pronounced crackling sound associated with spruce compared to oak.
However, the sound produced by the flame and fire plume during the combus-
tion phase could also have an effect. Also, the external conditions like initial
temperature and moisture content may also have an influence on the acous-
tic characteristics, especially for wooden based samples. The sensitivity of the
model to variations in temperature and moisture was somewhat decreased by
using non-preconditioned samples, and thus a variability in this respect in the
training set. However, the ability of the method to be generalized to other
materials and conditions than those present in this study is not known, and to
take this work from a proof of concept stage to a realistic task, more materials
and fire scenarios are needed in the data set.

It should also be noted that the heating conditions used in this study are
not necessarily representative of how most actual fire starts, but were chosen
as a way to isolate the acoustic fire event signal of interest from other potential
acoustic signals to demonstrate that it is feasible to use acoustic measurements
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for fire detection. The potential influence of heating conditions is not known at
this time although efforts were made to compensate for sounds emitted from
the heating cone. A benefit of the chosen experimental setup is that it is well
known in the fire community and known to deliver results that are repeatable
and reproducible.

The strength of a data driven method is that it can be adapted to a new
environment, either by training the model using data collected from such an
environment, or using data which has been augmented to resemble such an
environment. A limitation in the data collection setup in this study is that there
was not much variance in the acoustic environment. In a real setting there may
be other noise sources present such as talking humans and driving vehicles,
and the impulse-response of the acoustic room may also vary depending on
e.g. the size of the room and the material of the walls.

To make the model more robust against varying acoustic environments the
training and test data need to capture this variance. A way to mitigate the need
for such costly data collection efforts is to augment the already existing data
with other noise sources by simply mixing multiple acoustic signals together.
To emulate different acoustic rooms the impulse-response of such environments
could also be taken into account when mixing the signals.

The distance between the fire and the microphone will have an effect on
the performance of the system. In this study, we collected data where the
sound source was 100 mm from the microphone (see Section 3.1). A number of
sources of noise is present in this data; most notably ventilation and electrical
interference. At a greater distance, the increased signal-to-noise ratio will make
fire prediction harder but we hypothesize that the solution will have potential
if the training data is extended to cover this variance through further collection
or data augmentation. We leave it to future work to study this effect in detail.

Another promising way of reducing the need for extensive data collection is
transfer learning. The neural network architecture used in this study has been
developed and shown to transfer well between different acoustic tasks, and pre-
training the network on similar acoustic data is an interesting way forward.
Transfer learning and data augmentation could therefore be two important
ways forward to take this a proof of concept to a method applicable in a more
realistic setting.

The data collected in this study, together with the annotations, have been
made publicly available to facilitate further research on fire event detection
using acoustic signals. Instructions on how to download the data can be found
in the supplementary material.

Interesting future work would be to treat this as a regression problem and,
e.g., study if it is possible to predict more detailed characteristics of the flame
such as flame size or heat release rate from the acoustic signal during the
kindling phase, or the time until and after the kindling phase.
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6 Conclusions

This study investigates the use of acoustic sensors for early fire detection.
Microphones are a relatively inexpensive form of sensor, and using the acoustics
from a fire event as a complementary signal in current fire event detection
methods can make them more robust and reliable. The results presented shows
that the acoustic signal from a fire event can be used to detect fires in the
setting proposed in this study. The acoustic vibrations of the materials exposed
to heat are used to train a machine learning method to detect such vibrations.
The results show that the machine learning method can detect fire events from
measurements of the acoustic signals being emitted from the materials when
heated. The analysis suggests that performance of the convolutional neural
network varies depending on the material which is being exposed to the heating
condition.

The proposed method provides proof-of-concept only and further research
is needed to investigate, e.g. the impact of different acoustic environments and
different materials on the predictive qualities of the method. Transfer learning,
domain adaptation, and data augmentation are suggested as potential methods
for further investigation.

Supplementary information. All the raw data used in
this study can be found at the following Git-repository:
https://github.com/anonymous7483/fire-event-detection-dataset. The reposi-
tory contains instructions on how to download and pre-process the data, and
how to train and evaluate the machine learning model presented in this study
on the data.
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