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Abstract

Machine learning models are used to help scientists analyze large amounts of data across
all fields of science. These models become better with more data and larger models mainly
through supervised learning. Both supervised learning and model validation benefit from
annotated datasets where the annotations are of high quality. A key challenge is to annotate
the amount of data that is needed to train large machine learning models. This is because
annotation is a costly process and the collected labels can vary in quality. Methods that
enable cheap annotation of high quality are therefore needed.

In this thesis we consider ways to reduce the annotation cost and improve the label qual-
ity when annotating local structures in data. An example of a local structure is a sound
event in an audio recording, or a visual object in an image. By automatically detecting the
boundaries of these structures we allow the annotator to focus on the task of assigning a
textual description to the local structure within those boundaries. In this setting we analyze
the limits of a commonly used annotation method and compare that to an oracle method,
which acts as an upper bound on what can be achieved. Further, we propose new ways to
perform this kind of annotation that results in higher label quality for the studied datasets
at a reduced cost. Finally, we study ways to reduce annotation cost by making the most use
of each annotation that is given through better modelling approaches in general.
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Popular summary

Machine learning is at the core of the recent success of artificial intelligence. A machine
learning model is a form of computer algorithm that learns from data. The most common
and reliable way to get the model to learn is by providing supervision. This is done by
feeding the model with input data, say an audio recording, and then telling the model how
to describe what is in that audio recording. A description of an audio recording given by a
model is called a prediction, and a description given by a human that tells the model what
to predict is called a label.

As an example, we can feed an audio recording of a bird singing into such a model and then
tell it to predict that there is bird singing in the recording by providing an audio recording
with an appropriate label. We can do this many times with audio recordings of different
animal vocalizations such as dogs barking, whales calling, or birds singing. Eventually the
model will learn to predict what is in a given audio recording.

These predictions can then be used to automatically analyze large amounts of recorded au-
dio data to gain new scientific insights and establish policies. As an example, we could
detect the vocalizations of different animal species in an acoustically monitored habitat to
better understand the biodiversity in that habitat, and to establish policies towards main-
taining or improving the biodiversity.

At the core of supervised learning is the human description of the data, the label. If the
label is of low quality, for example by indicating that a bird is singing in a part of the audio
recording where it is not, then the predictions from the trained model will be of low quality.

What we explore in this research are ways to improve supervised training of machine learn-
ing models by helping the human annotator to provide labels of higher quality. The goal
is higher quality predictions at a reduced annotation cost. Resulting in higher quality sci-
entific insights and policies, at a reduced cost.
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Introduction

My interest in using machine learning to detect animal vocalizations in audio recordings
goes back to a hiking trip in the Himalayas in 2016. During the month-long hike in the
mountains my uncle would tell me the names of some different species of birds that were
singing along the trail. I had recently come into contact with neural networks, and started
to develop the idea that this should be possible to do with a computer. This idea never left
me, and when I came home I discovered that there is a whole field with researchers doing
just this called bioacoustics. This became the topic of my master’s thesis, where I classified
bird song in audio recordings using convolutional neural networks. And five years later I
started my doctoral studies on the topic of machine learning for audio analysis, often called
machine listening.

At the core of machine listening is the detection and classification of sound events. Sound
events are distinct sounds that we can identify and recall based on their descriptions. These
events, like ”bird singing” or ”dogs barking”, form the core elements of a sound scene,
helping us to interpret the surrounding environment. First we need to notice the onset and
offset of the sound event (detection), and then we need to describe the type of event that
has occurred (classification). Textual descriptions of these sound events are typically short,
capturing the essence of what we hear. When a human is performing the detection and
classification we call it annotation, and in this thesis we will call the textual description a
class label, and the onset and offset a segment label. Annotated sound events are necessary
to train and evaluate machine listening models that perform sound event detection. The
speed of annotation can vary depending on the annotation task, and the annotations are in-
herently subjective, influenced by the annotator’s personal experiences and perceptions [1].

What I have learned while developing methods and by discussing and collaborating with
ecologists from around the world, is that large scale audio datasets are scarce. Datasets with
annotations of thousands of animal sound events are rarely available when these projects
start. They often have very few, if any, labeled sound events, and a huge need to annotate
months or years of unlabeled audio recordings. What I want to explore in this thesis is
therefore ways to make annotation easier, and how to improve the quality of the labels
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collected during annotation. Further, I explore ways to make the best use the few initial
labels that we may have.

In Paper A, we develop a theory for the label quality and annotation cost of a commonly
used labeling method, where the annotator is limited to assigning class labels to fixed length
audio data segments, called FIX weak labeling.

In Paper B, we propose a weak labeling method where the annotator assigns class labels
to data segments that are adapted to cover the local structures (sound events) of interest.
This can save annotation cost by requiring the annotator to give class labels to fewer data
segments, and can also make the labels more precise by adapting the data segments to the
structures of interest.

In Paper c, we propose a method to learn the time-frequency resolution in the commonly
used log-Mel spectrogram as a part of the neural network training process.

In Paper D, we propose a robust method for bioacoustic sound event detection which can
learn from only five annotated sound events.

While the motivation for this research mainly comes out of the need for cost efficient and
high quality annotations for audio data, a lot of the research may be applicable to other
types of data as well. The theory developed, and the methods proposed can in principle be
applied to any time series data, and could possibly be extended to annotation of data in 2 or
3 dimensions as well (e.g., images or point clouds). I will therefore talk more broadly about
annotation of data with local structures, such as sound events, in this thesis (see chapter 1).

The thesis is divided into three main chapters. First, chapter 1 gives an introduction to
annotation of local structures in data and explains in more detail what we mean by a local
structure. This chapter puts Paper A and Paper B in perspective. Second, chapter 2 gives an
introduction to machine guided annotation of local structures in data, and puts Paper B,
Paper c and Paper D in perspective. Finally, chapter 3 conclude the thesis, and discuss
interesting future research directions.
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Chapter 1

Annotating local structures in data

In this chapter, I will introduce the concept of a local structure in data, why we want to
annotate local structures, and what it means to do so. I will then describe a common
method for annotating local structures without explicitly asking the annotator to describe
the boundaries of the structures. We will compare this method to an oracle method that
uses the knowledge of the true boundaries and quantify the gap between them.

The oracle method can be seen as an upper bound on what may be achievable if we were
to use the properties of the local structure during the annotation process. Finally, I will
discuss some of these properties, and how we may be able to use them to design more
precise annotation methods, which will lead us into the next chapter.

1 What is a local structure?

A local structure is a local part of the data that a group of people have given a textual descrip-
tion to. In figure 1.1 a local structure (green) is illustrated for audio (left) and image data
(right). In the audio example, the local structure is the sound event (green) associated with
the textual description ”bird song”. In the image example, the local structure is the set of
pixels that make up the visual object (green) associated with the textual description ”bird”.
The other parts of the data (gray) illustrate the other things happening in the background.

An important property of a local structure is that it occurs locally. In the audio example
the sound event occurs locally along the time dimension, and in the image example the
visual object occurs locally along the spatial dimensions. For audio, the local occurrence
is typically associated with some form of temporal coherence where dependencies between
previous and future sound samples are strong.
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Figure 1.1: An example of a local structure in audio and image data. The audio data is a recording of a bird singing, and the
image data is a picture of a bird. The local structures are shown in green. In the audio recording it is the sound
event of the bird singing, and in the image data it is the visual object of the bird.

2 Why and how do we annotate local structures?

In supervised learning we train the model to predict the labels given by the annotator, and
during evaluation we choose the model that best predict the labels. The prediction quality
of the model will therefore necessarily depend on the quality of the annotations. We have
seen this in sound event detection, where precise labels for the sound events lead to better
performing models [2].

In extent, the (scientific) insights that can be drawn from the model predictions depend
on the quality of the model. As an example, in ecology a researcher may be interested in
counting the number of animal vocalizations from a certain species in an audio recording.
The number of vocalizations, used together with a model of vocalization frequency, can
then be used to estimate the number of individuals in a recording [3]. The accuracy of this
count will depend on the quality of the annotations.

For evaluation data, a higher label quality means a better specification of what the best
model should do, which is always desirable. E.g., if the goal is a model that produces well
detected onsets and offsets of sound events, then the labels of the evaluation data need to
reflect this. However, when training machine learning models, label noise can act as a form
of regularization during training, meaning that sometimes noisy training labels can actually
result in a model that generalize better to the evaluation data. Despite this, I will argue that
anything that can be achieved with noisy training labels can also be achieved with noise
free training labels by simply adding the noise afterwards. The opposite is not true. From
this perspective, less noisy labels are strictly better also for the training data.

This is why we want to annotate the local structure; a precise local structure annotation
gives a more accurate description of the data that help us develop better machine learning
models.
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Annotation of a local structure require us to describe the boundaries of the local structure,
and to give a textual description of the structure within those boundaries. We therefore
consider two label categories: the segment label (boundaries) and the class label (textual
description). The segment label describes the boundaries of a data segment, and the class
label is the textual description that we attribute to that data segment.

Labeling data with local structures therefore consists of constructing a set of segment labels
and their corresponding class labels. The set of segment labels should partition the data into
disjoint segments that cover all of the data, meaning that every part of the data is associated
with exactly one class label. In figure 1.2 we show two different sets of segment labels leading
to a correctly (top) and incorrectly (bottom) labeled local structure in an audio recording.

In the top image of figure 1.2 we can see that assigning the correct class label to each of the
three segments will result in a correctly labeled local structure in the audio recording. In the
bottom image, however, we can see that it is impossible to assign a correct class label to the
second segment since it covers two different classes of the data, the local structure (green)
and background sounds (gray). Further, we can see that three is the minimum number of
segments needed to correctly label the audio data in this case, since if we have any fewer
we will necessarily have to cover both the green and gray part with one of them. However,
there are many ways, using more segments, that would also result in correct labels.

Figure 1.2: An example of segment labels and class labels of a local structure in audio data. The local structure is shown in
green. The top image shows a way to partition the audio data into correct segment labels. With correct segment
labels we can attribute a class label to each segment without introducing any label errors. In this example the class
label indicates the presence of the local structure. The bottom image shows a way to create incorrect segment
labels, in this case we will necessarily introduce noise into the labels by assigning a class label to each segment.

We will refer to the data point that we want to annotate, e.g., an audio recording in this
example, as x and the label of x as y. The label y = (s, c) consists of a set of segment labels s
and a set of corresponding class labels c. We are interested in understanding and reducing
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the label noise introduced by incorrect segment labels in this thesis, called segment label
noise. A segment label is incorrect if it covers data from multiple classes, because then there
is no correct class label for that segment. Segment label noise has been shown to lead to
decreased performance of sound event tagging models [4, 5], where the goal is to detect if
a sound event occurs in a given audio recording.

Another type of label noise occurs when an annotator assigns the incorrect class label for
a given data segment, we call this class label noise. We do not model class label noise in
Paper A, but we do study the effect of it in Paper B. A common way to reduce class label
noise is to form a consensus on the class label by asking multiple annotators to label the
same data segment [6, 7, 8].

3 Weak labeling of local structures

Annotating local structures is a demanding task that requires the annotator to detail the
boundaries for the segment labels and assign the correct class label to each of these seg-
ments. The segment labels given by annotators are often inconsistent [2], partly because
the interpretation of what constitutes the boundary of a local structure is subjective [9],
leading to segment label noise. In addition, annotation of segment labels is demanding and
takes more time, increasing the cost of annotation, and if the annotator is not an expert
they may misunderstand the annotation task if it is too complex [8]. All these challenges
associated with getting segment labels of high quality from annotators has created a need
for methods that do not explicitly ask the annotator for the segment labels.

We therefore consider the setting where we only ask the annotator for a class labels of a given
data segment, called weak labeling. This means that the segment labels need to be automat-
ically constructed. The automatic construction of labels is often called pseudo-labeling [10].
In this thesis, we are interested in understanding the segment label noise resulting from the
weak labeling process, which is a form of pseudo-labeling, and we propose ways to reduce
this noise to get more precise annotation of the data.

3.1 FIX and ORC weak labeling

A commonly used weak labeling method is to partition the data into fixed and equal length
segments, we will call this FIX weak labeling. The annotator is then asked to provide class
labels for the data within each segment, and the corresponding segment label is inferred
from the boundaries of the segment. The FIX weak labeling method is illustrated in fig-
ure 1.3. For audio data, this means that the annotator assigns class labels to equal sized
audio segments. For images, the class labels would be assigned to rectangle segments, and
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so on.

Figure 1.3: The FIX weak labeling method for audio (left) and images (right). The data is partitioned into equally fixed sized
segments, and the annotator is asked to assign a class label to these segments. In these examples we can see how
FIX introduces false positives, the parts of the class label that do not overlap with the local structure.

Variations of FIX weak labeling have been used to collect many of the large scale audio
datasets that exist today. Annotation of AudioSet [11], which is still one of the largest and
most used audio datasets today, was done by selecting a subset of 10 second segments to
be weakly annotated. A more recently collected dataset called MAESTRO Real [8] was
annotated by asking for class labels of 10 second segments with 9 second overlap to reduce
segment label noise, and by asking five annotators to annotate each segment to reduce class
label noise. They end up with multiple class labels for each part of the audio data and
perform a weighed majority vote, based on an estimate of annotator competence, to get a
single label for each part of the data.

The segment size as well as the overlap has an effect on the segment and class label noise.
Too small segments may result in the annotator missing the presence of a local structure,
which can introduce class label noise, but too large segments will introduce segment label
noise. In general, smaller segments and larger overlap also mean that the annotator has
to assign more class labels which increase the annotation cost. Which segment size and
overlap to choose therefore depends on assumptions of the annotators’ ability to detect the
local structures. For some local structures the annotator may have to observe the whole
structure to give a correct class label.

In Paper A we develop a theory for the limits of FIX weak labeling in 1 dimension (e.g.,
audio). We restrict ourselves to the setting where there is no overlap between the segments,
and study the effect that the annotator model has on the resulting segment label noise
for varying segment sizes. We introduce a metric called query intersection over union
(QIoU), and an intuitive way to think of this metric is that 1−QIoU roughly correspond
to the segment label noise for a given segment. Using this we develop an expression for the
segment size that will minimize the segment label noise in expectation for a given annotator
model and data distribution.

We compare to an oracle (ORC) weak labeling method, which should be considered as
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an upper bound that we can not know in practice. The ORC weak labeling method is
illustrated in figure 1.4. It asks the annotator to assign a class label to the ground truth local
structures. By construction this method will never introduce segment label noise, it will
also always ask the annotator for the fewest possible number of class labels (three in the
audio example, and two in the image example).

Figure 1.4: The ORC weak labeling method for audio (left) and images (right). There are no false positives, and we ask for the
fewest number of class labels, 3 in the audio case, and 2 in the image case.

It may seem counterintuitive to call this ORC weak labeling, since this method gets labels
that are of equal quality as the best strong labeling method where the class labels and seg-
ment labels are given by an oracle annotator. However, it is a weak labeling method in
the sense that it only asks the annotator for class labels and never for segment labels. Thus
acting as an upper bound on weak labeling, which we can not know, but that we can try
to estimate in practice.

This highlights the potential of modelling the ORC weak labeling method by exploiting
properties of the local structures, such as local similarities, dependencies and coherence, to
automatically construct the segment labels, which is what we do in Paper B. In Paper B we
use these properties to create segments that are adapted to the sound events of interest, and
show that this can lead to higher quality labels at a reduced annotation cost. This is called
machine guided annotation, which is the topic of the next chapter.
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Chapter 2

Machine guided annotation of local
structures in data

”The real problem is what can man and machine do together and
not in competition.”— Richard W. Hamming

In this chapter we will look at machine guided ways to reduce the annotation cost of lo-
cal structures in data. We will introduce the annotation loop and the different ways to
reduce annotation cost. Then we will connect Paper B-D to these, and finally discuss some
differences of our proposed method and other methods.

1 The data annotation loop

We consider the setting where the annotator can only provide class labels for given data seg-
ments. The boundaries of the local structures therefore need to be automatically estimated,
and then the annotator is asked to attribute a class label to the data segment contained
within the boundaries.

Let us start with the generic annotation loop given in Algorithm 1. The algorithm takes
as input a set of unlabeled data DU = {xi}ni=1, a model M, and a performance criterion
τ . The algorithm iteratively samples the next data point x to be annotated from the set
of unlabeled data points, asks an annotator to label that data point, and then updates the
model using the new annotation. The new model performance τM is then evaluated, and we
continue this annotation loop until a satisfactory model performance τ has been reached.
The output of the algorithm is the set of m labeled data points DL = {(xi, yi)}mi=1, that
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results in a model M of satisfactory performance τM ≥ τ . The set of unlabeled data points
DU that we want to annotate can for example be a set of audio recordings, or a set of images
such as those illustrated in figure 1.1 in the previous chapter, and the goal is a label y for
each data point x that describes the local structures in it.

Algorithm 1 Annotation of data
1: Input: Unlabeled data DU = {xi}ni=1, model M, performance criterion τ
2: Output: Labeled data DL
3: DL ← ∅
4: τM ← evaluate model M
5: while τM < τ do
6: sample and remove x from unlabeled data DU
7: annotator gives label y to x and adds (x, y) to labeled data DL
8: update model M using labeled data DL
9: evaluate the model to get performance τM

10: end while
11: return DL

We are interested in ways to reduce the total annotation cost to get a model M with per-
formance τM ≥ τ . There are many ways to achieve this goal, each focusing on a separate
line in Algorithm 1.

Firstly, looking at line 6, we can sample the next data point x such that the gain in model
performance is maximized when x is annotated (using knowledge of M). This is the goal
of works in active learning [12, 13].

Secondly, looking at line 7, we can either reduce the annotation cost c associated with the
annotator giving the label y to x, or we can improve the quality of the annotation y. A
higher quality annotation should lead to a higher gain in model performance. In Paper B
we propose a method to increase the label quality of y for a given x at a reduced annotation
cost c. We do this by using the model M to guide the annotator towards a higher quality y.

Lastly, looking at line 8, we can design models M that gain more in performance from each
update. In Paper D we propose a few-shot learning method which is designed to learn a lot
from only a few annotated examples, and in Paper c we propose a differentiable log-Mel
spectrogram (DMEL) that can be optimized jointly with the model M.
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2 Increasing the label quality at a reduced annotation cost

Increasing the quality of the label y given by the annotator for data point x can be done
by increasing the labeling capability of the annotator. This can be done, for example, by
choosing an expert annotator, or increasing the annotators’ ability to perform the task [14].
Both these are ways of changing the properties of the human annotator, which we will not
consider here.

We can also guide the annotator during the annotation task in ways that facilitate higher
quality. This can be done, for example, by providing better annotation interfaces [15], or
by doing parts of the annotation work automatically [16, 17, 18]. Automating parts of the
annotation work has the benefit that label quality can potentially be increased at the same
time as the annotation cost is reduced. In Paper B we propose at a weak labeling strategy
towards this end.

Let us consider the annotation cost associated with assigning a label y to a data point x
(line 7 in Algorithm 1). As described in section 2, the label y = (s, c) consists of a set of
segment labels s = {s1, . . . , sk} that partition the data point x (e.g., an audio recording)
into k disjoint data segments that completely cover x, and a set c = {c1, . . . , ck} of the
k corresponding class labels given by the annotator. The partitioning of x into k disjoint
segments need to be done automatically since we are restricted to only ask the annotator
for class labels. The annotation cost can therefore be written as ck where c is the cost of
assigning a class label to a data segment. If we need to annotate m data points to achieve
model performance τ the total cost therefore becomes mkc. We can reduce this cost by
reducing any of the three factors in the product. We will consider m and k in this thesis, as
c is a property of the human annotator.

The number of needed annotations can be reduced if the quality of the labels is increased.
The quality of the label y can be affected by class label noise and segment label noise (see
section 2). Let Q(x, y) be a measure of the quality of the label y given to x with respect to
the true class labels and local structures. Let Q̄ = 1

n
∑

(x,y)∈DL
Q(x, y) denote the average

label quality of the annotated dataset DL resulting from Algorithm 1.

In Paper B we propose a method that makes use of the modelM to partition x into segments
that are better adapted to the local structures of interest. We call this machine guided
annotation, because the model M is used to guide the annotation towards higher quality
segment labels. Further, the model is updated with each new annotation. Initially, this
may lead to noisy segment labels, but as the model is updated this noise is reduced. We
empirically show that this happens, and that it leads to a higher label quality on average for
the same annotation budget k compared to other commonly used methods. An improved
average label quality Q̄ means that the number of annotation rounds m needed to reach
model performance τ is effectively reduced.
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Automating parts of the annotation work does come with certain risks. If the automatically
constructed segment labels contain a lot of segment label noise, then we may end up with
lower quality labels instead. We have not observed this to be a problem in Paper B, but
it is important to be aware of this risk. However, a nice property of first constructing the
segments and then asking the annotator to give them class labels is that if the segments are
noisy, then the annotator can notice this and take appropriate actions.

There is a subtle difference in this setup to other recently proposed pseudo-labeling methods
for time series data, where the weak labels are given before the pseudo-labeling. In [16, 18]
the weak label is first collected for a given point in time and then propagated to cover the
local structure according to a temporal coherence criterion, and in [17] the weak labels are
used to train a machine learning model which then predicts the pseudo-labels for the local
structure, and then another model is trained on the pseudo-labels.

In our setup, by performing the weak-labeling after the pseudo-labeling we make sure that
the annotator looks at the pseudo-labels, giving a natural quality assurance to the labeling
process.

3 Learning more from the annotations

Broadly speaking, this is the goal of most work in supervised machine learning. We want to
develop models that learn well from annotated training data, meaning that they generalize
to some annotated evaluation data. However, there are specialized research directions such
as few-shot learning, where the goal is to learn well from very few training annotations [19,
20, 21, 22]. Few-shot learning methods are, however, typically not designed to scale with
more annotations. So, there is a trade-off here, and which way to model the data depends
on the budget you have for annotation. If the budget is very low you may consider few-shot
learning methods such as the one explored in Paper D, and if the budget is reasonably large
then you may consider more complex ways of modelling such as that explored in Paper c.

To realize the ideas in Paper B we need good ways of modelling audio data in general. In
Paper D we look at ways to make the most use of a few annotations. We do this by using
an event length adapted ensemble of prototypical neural networks [19]. The key idea in
the paper is to choose embedding functions for the ensemble that have been trained for
certain event lengths based on the event lengths of the few examples that we already have.
In Paper c we propose a version of the log-Mel spectrogram where the window length
of the underlying short-time Fourier transform can be optimized jointly with the neural
network model. The window length defines the resolution in time and frequency of the
log-Mel spectrogram, and optimizing this for the classification task at hand can lead to
stronger models. The log-Mel spectrogram is a very commonly used input representation
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for convolutional neural networks (CNNs) in audio.

4 The difference between active learning and active annotation

In principle, the active updating of the model with each new annotation proposed in Paper B
fits into the general framework of active learning, which is the reason active learning is in the
title of the paper. However, I now believe that it may be reasonable to distinguish between
them, and would like to propose the term active annotation for machine guided annotation
where the model is iteratively updated during the annotation loop.

In active learning, we typically consider the setting where the next data point x is sampled
to maximize some uncertainty criteria of the model (line 6 in Algorithm 1 depends on M).
The idea is that the data point x that the model is most uncertain about should be most
informative to annotate next, and that by biasing the data sampling process in this way we
can reduce the number of annotations needed to reach a satisfactory model performance.
The label noise is assumed independent of the data point to annotate.

In active annotation, the annotator is guided by the model M during the annotation of
a given data point x. This means that the label noise will depend on the data point to
annotate.

That is, active learning is about changing the sampling of x using knowledge of M, active
annotation is about changing the sampling of y given x using knowledge of M.
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Chapter 3

Conclusions and future work

1 Conclusions

We have developed a theory for weak labeling of local structures in data measured along 1
dimension, such as time series or audio data, and studied the limits of an approach com-
monly used in practice. We have compared this to an oracle method that solves the weak
labeling task optimally. Knowing the consequences of different choices when performing
weak labeling is crucial to make sure that the resulting annotations are of sufficient quality.
(Paper A)

The limits frame the weak labeling problem, and can be used to put current methods in
context. Further, the developed theory may give insights into ways to develop improved
weak labeling methods. Towards this end we have also developed a weak labeling method
that aims to model the oracle method by using each new annotation to further improve
the annotation quality through machine guidance. We have showed that this method of
annotation results in a higher label quality on average on all the studied datasets and for all
assumed annotator models. (Paper B)

We have also proposed a method to learn the resolution in time and frequency of the
typically used log-Mel spectrogram in audio modelling. We have showed that learning the
appropriate resolution for the task at hand as a part of model training can speed up the
training process, and lead to better performing models. (Paper c)

Finally, we have explored a modelling method that only requires as few as five annotated
local structures to perform well, and have proposed two ways of improving the robustness
of that method towards problems where the local structures vary a lot in size. (Paper D)
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2 Future work

The papers that have shaped this thesis the most are Paper A and Paper B, which are about
annotation of data with local structures, and in particular sound data. There are many
future research direction that could be explored on this topic.

2.1 FIX weak labeling in more than 1 dimension

In Paper A we derive a theory for FIX weak labeling of local structures that appear along
1 dimension of the data, such as in time series data. It would be interesting to extend this
theory into D dimensions, or at least into 2 and 3 dimensions such as images or point
clouds. We rarely annotate in more than 3 dimensions anyway.

The number of class label assignments needed should grow exponentially with D for the
studied FIX weak labeling method, but linearly with the number of local structures in the
data for ORC weak labeling, making the potential cost gain of adaptive methods higher in
more dimensions. Of course, modelling the ORC weak labeling method will also become
a harder task with more dimensions. Exploring what happens when more dimensions are
introduced is a very interesting research direction.

2.2 Active learning and active annotation in combination

While active learning is about changing the sampling of the data point x using the model,
active annotation is about changing the sampling of the label y given a data point x using
the model.

Clearly there will be a tension between these two processes if they are used jointly.

The best model we can hope to learn is a perfect model of the annotator, meaning that a
sample that is hard for the model should also be hard for the annotator to annotate, leading
to more label noise. By studying active annotation and active learning jointly, we may gain
new insights into this trade-off between label noise and hardness of sample and find that
the best way to learn may not be to always be exposed to the hardest sample of the problem,
but rather a reasonably hard sample. The question is: what is reasonably hard?

2.3 Model selection in the active annotation loop

The underlying model in Paper B is a prototypical neural network [19], which was developed
to learn quickly from only a few annotations. Unfortunately, the way this is done also means
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that the learning saturates rather quickly. We have seen this in experiments where the label
quality on a held out test set (not part of the paper) saturated after annotation of around
20 to 50 audio recordings.

Note that the label quality after saturation is better than that of the methods we compare
with, so it is still beneficial to use this approach. But, it would be even better if the label
quality just kept increasing until we eventually learn to model the ORC weak labeling
process. We will probably not reach this upper bound, but we should aim to.

A very interesting research direction would be to make the complexity of the model depend
on the number of annotations available through some model selection criteria. For exam-
ple, we have seen in other works on active few-shot learning [21] that a prototypical neural
network can have better performance than a linear classifier applied on the same embed-
dings when only a few annotations are available, but that the linear classifier becomes better
after a certain number of annotations. The question is when to make the switch from the
simple model (prototypical neural network) to the more complex model (a linear model
applied on the embeddings), and going further when to choose models with even higher
capacity as we accumulate more annotations.

2.4 Other annotator models

In Paper A we derive the theory for an annotator model that can detect presence of local
structures if a fraction γ ∈ (0, 1] of the local structure is contained within a given segment.
While this makes sense for some types of sound events, other assumptions may be more
applicable for other types of data.

In general, a better understanding of these properties of human annotators in practice
would be very beneficial, and empirical studies towards this end are encouraged.

2.5 Adaptive weak labeling of multiple classes

The adaptive weak labeling method proposed in Paper B is developed for presence or absence
annotation of a certain sound event class of interest. That is, to annotate multiple classes we
need to perform multiple binary annotation tasks. However, the underlying prototypical
neural network should be fairly easy to extend to multiple sound event classes of interest
to facilitate annotation of multiple classes in a single annotation pass. There are trade-
offs between multi-pass binary annotation and single-pass multi-label annotation [23], and
being able to choose between these would be beneficial.
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