John Martinsson

Semantic Segmentation of Fashion Images Using Feature Pyramid Networks

Authors: John Martinsson, Olof Mogren

Published in: Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019

Year: 2020

Location:

Abstract

In this work, we approach the problem of semantically segmenting fashion images into different categories of clothing. This problem poses particular challenges because of the importance of both textural information and cues from shapes and context. To this end, we propose a fully convolutional neural network based on feature pyramid networks (FPN), together with a backbone consisting of the ResNeXt architecture. Our experimental evaluation shows that the proposed model achieves state-of-the-art results on two standard fashion benchmark datasets, and a qualitative study verifies its effectiveness when applied to typical fashion images. The approach has a modest memory footprint and can be used without a conditional random field (CRF) without much degradation of quality which makes our model preferable from a computational perspective. When comparing all methods without a CRF, our approach outperforms all state-of-the-art models on both datasets by a clear margin in all evaluated metrics. In fact, our approach achieves a higher accuracy without the CRF than the state-of-the-art models using CRFs.

BibTeX

@InProceedings{Martinsson_2019_ICCV,
  author = {Martinsson, John and Mogren, Olof},
  title = {Semantic Segmentation of Fashion Images Using Feature Pyramid Networks},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
  month = {Oct},
  year = {2019}
}

License/copyright for PDF: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.